Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blenn0 Structured version   Visualization version   GIF version

Theorem blenn0 42165
Description: The binary length of a "number" not being 0. (Contributed by AV, 20-May-2020.)
Assertion
Ref Expression
blenn0 ((𝑁𝑉𝑁 ≠ 0) → (#b𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1))

Proof of Theorem blenn0
StepHypRef Expression
1 blenval 42163 . 2 (𝑁𝑉 → (#b𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))
2 ifnefalse 4048 . 2 (𝑁 ≠ 0 → if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) = ((⌊‘(2 logb (abs‘𝑁))) + 1))
31, 2sylan9eq 2664 1 ((𝑁𝑉𝑁 ≠ 0) → (#b𝑁) = ((⌊‘(2 logb (abs‘𝑁))) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  ifcif 4036  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  2c2 10947  cfl 12453  abscabs 13822   logb clogb 24302  #bcblen 42161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-1cn 9873
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-blen 42162
This theorem is referenced by:  blenre  42166  blennn  42167
  Copyright terms: Public domain W3C validator