MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcls Structured version   Visualization version   GIF version

Theorem blcls 22121
Description: The closure of an open ball in a metric space is contained in the corresponding closed ball. (Equality need not hold; for example, with the discrete metric, the closed ball of radius 1 is the whole space, but the open ball of radius 1 is just a point, whose closure is also a point.) (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
blcld.3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
Assertion
Ref Expression
blcls ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ 𝑆)
Distinct variable groups:   𝑧,𝐷   𝑧,𝑅   𝑧,𝑃   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝐽(𝑧)

Proof of Theorem blcls
StepHypRef Expression
1 mopni.1 . . 3 𝐽 = (MetOpen‘𝐷)
2 blcld.3 . . 3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
31, 2blcld 22120 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽))
4 blssm 22033 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)
5 elbl 22003 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑧𝑋 ∧ (𝑃𝐷𝑧) < 𝑅)))
6 xmetcl 21946 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
763expa 1257 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
873adantl3 1212 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
9 simpl3 1059 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑧𝑋) → 𝑅 ∈ ℝ*)
10 xrltle 11858 . . . . . . . 8 (((𝑃𝐷𝑧) ∈ ℝ*𝑅 ∈ ℝ*) → ((𝑃𝐷𝑧) < 𝑅 → (𝑃𝐷𝑧) ≤ 𝑅))
118, 9, 10syl2anc 691 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) < 𝑅 → (𝑃𝐷𝑧) ≤ 𝑅))
1211expimpd 627 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((𝑧𝑋 ∧ (𝑃𝐷𝑧) < 𝑅) → (𝑃𝐷𝑧) ≤ 𝑅))
135, 12sylbid 229 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑅) → (𝑃𝐷𝑧) ≤ 𝑅))
1413ralrimiv 2948 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ∀𝑧 ∈ (𝑃(ball‘𝐷)𝑅)(𝑃𝐷𝑧) ≤ 𝑅)
15 ssrab 3643 . . . 4 ((𝑃(ball‘𝐷)𝑅) ⊆ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ↔ ((𝑃(ball‘𝐷)𝑅) ⊆ 𝑋 ∧ ∀𝑧 ∈ (𝑃(ball‘𝐷)𝑅)(𝑃𝐷𝑧) ≤ 𝑅))
164, 14, 15sylanbrc 695 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅})
1716, 2syl6sseqr 3615 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑆)
18 eqid 2610 . . 3 𝐽 = 𝐽
1918clsss2 20686 . 2 ((𝑆 ∈ (Clsd‘𝐽) ∧ (𝑃(ball‘𝐷)𝑅) ⊆ 𝑆) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ 𝑆)
203, 17, 19syl2anc 691 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900  wss 3540   cuni 4372   class class class wbr 4583  cfv 5804  (class class class)co 6549  *cxr 9952   < clt 9953  cle 9954  ∞Metcxmt 19552  ballcbl 19554  MetOpencmopn 19557  Clsdccld 20630  clsccl 20632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-cls 20635
This theorem is referenced by:  blsscls  22122  cnllycmp  22563  cncmet  22927
  Copyright terms: Public domain W3C validator