Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpima1snALT Structured version   Visualization version   GIF version

Theorem bj-xpima1snALT 32137
Description: Alternate proof of bj-xpima1sn 32136. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-xpima1snALT (𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅)

Proof of Theorem bj-xpima1snALT
StepHypRef Expression
1 disjsn 4192 . . 3 ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝐴)
2 df-nel 2783 . . 3 (𝑋𝐴 ↔ ¬ 𝑋𝐴)
31, 2bitr4i 266 . 2 ((𝐴 ∩ {𝑋}) = ∅ ↔ 𝑋𝐴)
4 xpima1 5496 . 2 ((𝐴 ∩ {𝑋}) = ∅ → ((𝐴 × 𝐵) “ {𝑋}) = ∅)
53, 4sylbir 224 1 (𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1475  wcel 1977  wnel 2781  cin 3539  c0 3874  {csn 4125   × cxp 5036  cima 5041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator