Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xnex Structured version   Visualization version   GIF version

Theorem bj-xnex 32245
Description: Lemma for snnex 6862 and bj-pwnex 32246. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
bj-xnex (∀𝑦(𝐴𝑉𝑦𝐴) → {𝑥 ∣ ∃𝑦 𝑥 = 𝐴} ∉ V)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴
Allowed substitution hints:   𝐴(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem bj-xnex
StepHypRef Expression
1 nfa1 2015 . . . . 5 𝑦𝑦(𝐴𝑉𝑦𝐴)
2 nfe1 2014 . . . . . . 7 𝑦𝑦 𝑥 = 𝐴
32nfab 2755 . . . . . 6 𝑦{𝑥 ∣ ∃𝑦 𝑥 = 𝐴}
43nfuni 4378 . . . . 5 𝑦 {𝑥 ∣ ∃𝑦 𝑥 = 𝐴}
5 nfcv 2751 . . . . 5 𝑦V
6 vex 3176 . . . . . . 7 𝑦 ∈ V
762a1i 12 . . . . . 6 (∀𝑦(𝐴𝑉𝑦𝐴) → (𝑦 {𝑥 ∣ ∃𝑦 𝑥 = 𝐴} → 𝑦 ∈ V))
8 nfcv 2751 . . . . . . . . . . 11 𝑥𝐴
9 nfv 1830 . . . . . . . . . . 11 𝑥 𝑦𝐴
10 eleq2 2677 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
1110biimprd 237 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑦𝐴𝑦𝑥))
12 19.8a 2039 . . . . . . . . . . . 12 (𝑥 = 𝐴 → ∃𝑦 𝑥 = 𝐴)
1311, 12jctird 565 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑦𝐴 → (𝑦𝑥 ∧ ∃𝑦 𝑥 = 𝐴)))
148, 9, 13spcimegf 3260 . . . . . . . . . 10 (𝐴𝑉 → (𝑦𝐴 → ∃𝑥(𝑦𝑥 ∧ ∃𝑦 𝑥 = 𝐴)))
1514imp 444 . . . . . . . . 9 ((𝐴𝑉𝑦𝐴) → ∃𝑥(𝑦𝑥 ∧ ∃𝑦 𝑥 = 𝐴))
1615sps 2043 . . . . . . . 8 (∀𝑦(𝐴𝑉𝑦𝐴) → ∃𝑥(𝑦𝑥 ∧ ∃𝑦 𝑥 = 𝐴))
17 eluniab 4383 . . . . . . . 8 (𝑦 {𝑥 ∣ ∃𝑦 𝑥 = 𝐴} ↔ ∃𝑥(𝑦𝑥 ∧ ∃𝑦 𝑥 = 𝐴))
1816, 17sylibr 223 . . . . . . 7 (∀𝑦(𝐴𝑉𝑦𝐴) → 𝑦 {𝑥 ∣ ∃𝑦 𝑥 = 𝐴})
1918a1d 25 . . . . . 6 (∀𝑦(𝐴𝑉𝑦𝐴) → (𝑦 ∈ V → 𝑦 {𝑥 ∣ ∃𝑦 𝑥 = 𝐴}))
207, 19impbid 201 . . . . 5 (∀𝑦(𝐴𝑉𝑦𝐴) → (𝑦 {𝑥 ∣ ∃𝑦 𝑥 = 𝐴} ↔ 𝑦 ∈ V))
211, 4, 5, 20eqrd 3586 . . . 4 (∀𝑦(𝐴𝑉𝑦𝐴) → {𝑥 ∣ ∃𝑦 𝑥 = 𝐴} = V)
22 vprc 4724 . . . . 5 ¬ V ∈ V
2322a1i 11 . . . 4 (∀𝑦(𝐴𝑉𝑦𝐴) → ¬ V ∈ V)
2421, 23eqneltrd 2707 . . 3 (∀𝑦(𝐴𝑉𝑦𝐴) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝐴} ∈ V)
25 uniexg 6853 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = 𝐴} ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = 𝐴} ∈ V)
2624, 25nsyl 134 . 2 (∀𝑦(𝐴𝑉𝑦𝐴) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝐴} ∈ V)
27 df-nel 2783 . 2 ({𝑥 ∣ ∃𝑦 𝑥 = 𝐴} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝐴} ∈ V)
2826, 27sylibr 223 1 (∀𝑦(𝐴𝑉𝑦𝐴) → {𝑥 ∣ ∃𝑦 𝑥 = 𝐴} ∉ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wnel 2781  Vcvv 3173   cuni 4372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-nel 2783  df-ral 2901  df-rex 2902  df-v 3175  df-in 3547  df-ss 3554  df-uni 4373
This theorem is referenced by:  bj-pwnex  32246
  Copyright terms: Public domain W3C validator