Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-spimvv Structured version   Visualization version   GIF version

Theorem bj-spimvv 31908
 Description: Version of spimv 2245 and spimv1 2101 with a dv condition, which does not require ax-13 2234. UPDATE: this is spimvw 1914. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-spimvv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bj-spimvv (∀𝑥𝜑𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem bj-spimvv
StepHypRef Expression
1 ax6ev 1877 . . 3 𝑥 𝑥 = 𝑦
2 bj-spimvv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2eximii 1754 . 2 𝑥(𝜑𝜓)
4319.36iv 1892 1 (∀𝑥𝜑𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875 This theorem depends on definitions:  df-bi 196  df-ex 1696 This theorem is referenced by:  bj-spvv  31910  bj-el  31984
 Copyright terms: Public domain W3C validator