Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-spimedv Structured version   Visualization version   GIF version

Theorem bj-spimedv 31906
 Description: Version of spimed 2243 with a dv condition, which does not require ax-13 2234. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-spimedv.1 (𝜒 → Ⅎ𝑥𝜑)
bj-spimedv.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bj-spimedv (𝜒 → (𝜑 → ∃𝑥𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem bj-spimedv
StepHypRef Expression
1 bj-spimedv.1 . . 3 (𝜒 → Ⅎ𝑥𝜑)
21nf5rd 2054 . 2 (𝜒 → (𝜑 → ∀𝑥𝜑))
3 ax6ev 1877 . . . 4 𝑥 𝑥 = 𝑦
4 bj-spimedv.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4eximii 1754 . . 3 𝑥(𝜑𝜓)
6519.35i 1795 . 2 (∀𝑥𝜑 → ∃𝑥𝜓)
72, 6syl6 34 1 (𝜒 → (𝜑 → ∃𝑥𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473  ∃wex 1695  Ⅎwnf 1699 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-ex 1696  df-nf 1701 This theorem is referenced by:  bj-spimev  31907
 Copyright terms: Public domain W3C validator