Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rrvecssvecel Structured version   Visualization version   GIF version

Theorem bj-rrvecssvecel 32328
 Description: Real vector spaces are vector spaces (elemental version). (Contributed by BJ, 9-Jun-2019.)
Assertion
Ref Expression
bj-rrvecssvecel (𝐴 ∈ ℝ-Vec → 𝐴 ∈ LVec)

Proof of Theorem bj-rrvecssvecel
StepHypRef Expression
1 bj-rrvecssvec 32327 . 2 ℝ-Vec ⊆ LVec
21sseli 3564 1 (𝐴 ∈ ℝ-Vec → 𝐴 ∈ LVec)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977  LVecclvec 18923  ℝ-Veccrrvec 32325 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-in 3547  df-ss 3554  df-bj-rrvec 32326 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator