Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restuni Structured version   Visualization version   GIF version

Theorem bj-restuni 32231
Description: The union of an elementwise intersection by a set is equal to the intersection with that set of the union of the family. See also restuni 20776 and restuni2 20781. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restuni ((𝑋𝑉𝐴𝑊) → (𝑋t 𝐴) = ( 𝑋𝐴))

Proof of Theorem bj-restuni
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 4375 . . 3 (𝑥 (𝑋t 𝐴) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (𝑋t 𝐴)))
2 elrest 15911 . . . . . 6 ((𝑋𝑉𝐴𝑊) → (𝑦 ∈ (𝑋t 𝐴) ↔ ∃𝑧𝑋 𝑦 = (𝑧𝐴)))
32anbi2d 736 . . . . 5 ((𝑋𝑉𝐴𝑊) → ((𝑥𝑦𝑦 ∈ (𝑋t 𝐴)) ↔ (𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴))))
43exbidv 1837 . . . 4 ((𝑋𝑉𝐴𝑊) → (∃𝑦(𝑥𝑦𝑦 ∈ (𝑋t 𝐴)) ↔ ∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴))))
5 eluni 4375 . . . . . . . 8 (𝑥 𝑋 ↔ ∃𝑧(𝑥𝑧𝑧𝑋))
65bicomi 213 . . . . . . 7 (∃𝑧(𝑥𝑧𝑧𝑋) ↔ 𝑥 𝑋)
76anbi1i 727 . . . . . 6 ((∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴) ↔ (𝑥 𝑋𝑥𝐴))
87a1i 11 . . . . 5 ((𝑋𝑉𝐴𝑊) → ((∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴) ↔ (𝑥 𝑋𝑥𝐴)))
9 df-rex 2902 . . . . . . . . 9 (∃𝑧𝑋 𝑦 = (𝑧𝐴) ↔ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴)))
109anbi2i 726 . . . . . . . 8 ((𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ (𝑥𝑦 ∧ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴))))
11 19.42v 1905 . . . . . . . . 9 (∃𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ (𝑥𝑦 ∧ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴))))
1211bicomi 213 . . . . . . . 8 ((𝑥𝑦 ∧ ∃𝑧(𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
1310, 12bitri 263 . . . . . . 7 ((𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ ∃𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
1413exbii 1764 . . . . . 6 (∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ ∃𝑦𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
15 excom 2029 . . . . . 6 (∃𝑦𝑧(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑧𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))))
16 an12 834 . . . . . . . . . 10 ((𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ (𝑧𝑋 ∧ (𝑥𝑦𝑦 = (𝑧𝐴))))
1716exbii 1764 . . . . . . . . 9 (∃𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑦(𝑧𝑋 ∧ (𝑥𝑦𝑦 = (𝑧𝐴))))
18 19.42v 1905 . . . . . . . . 9 (∃𝑦(𝑧𝑋 ∧ (𝑥𝑦𝑦 = (𝑧𝐴))) ↔ (𝑧𝑋 ∧ ∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴))))
19 eqimss 3620 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑧𝐴) → 𝑦 ⊆ (𝑧𝐴))
2019sseld 3567 . . . . . . . . . . . . . . 15 (𝑦 = (𝑧𝐴) → (𝑥𝑦𝑥 ∈ (𝑧𝐴)))
2120imdistanri 723 . . . . . . . . . . . . . 14 ((𝑥𝑦𝑦 = (𝑧𝐴)) → (𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)))
22 eqimss2 3621 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑧𝐴) → (𝑧𝐴) ⊆ 𝑦)
2322sseld 3567 . . . . . . . . . . . . . . 15 (𝑦 = (𝑧𝐴) → (𝑥 ∈ (𝑧𝐴) → 𝑥𝑦))
2423imdistanri 723 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)) → (𝑥𝑦𝑦 = (𝑧𝐴)))
2521, 24impbii 198 . . . . . . . . . . . . 13 ((𝑥𝑦𝑦 = (𝑧𝐴)) ↔ (𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)))
2625exbii 1764 . . . . . . . . . . . 12 (∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴)) ↔ ∃𝑦(𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)))
27 19.42v 1905 . . . . . . . . . . . 12 (∃𝑦(𝑥 ∈ (𝑧𝐴) ∧ 𝑦 = (𝑧𝐴)) ↔ (𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)))
28 vex 3176 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
2928inex1 4727 . . . . . . . . . . . . . . . 16 (𝑧𝐴) ∈ V
3029isseti 3182 . . . . . . . . . . . . . . 15 𝑦 𝑦 = (𝑧𝐴)
3130biantru 525 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑧𝐴) ↔ (𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)))
3231bicomi 213 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)) ↔ 𝑥 ∈ (𝑧𝐴))
33 elin 3758 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧𝐴) ↔ (𝑥𝑧𝑥𝐴))
3432, 33bitri 263 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑧𝐴) ∧ ∃𝑦 𝑦 = (𝑧𝐴)) ↔ (𝑥𝑧𝑥𝐴))
3526, 27, 343bitri 285 . . . . . . . . . . 11 (∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴)) ↔ (𝑥𝑧𝑥𝐴))
3635anbi2i 726 . . . . . . . . . 10 ((𝑧𝑋 ∧ ∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴))) ↔ (𝑧𝑋 ∧ (𝑥𝑧𝑥𝐴)))
37 biid 250 . . . . . . . . . . 11 ((𝑥𝑧𝑥𝐴) ↔ (𝑥𝑧𝑥𝐴))
3837bianass 838 . . . . . . . . . 10 ((𝑧𝑋 ∧ (𝑥𝑧𝑥𝐴)) ↔ ((𝑧𝑋𝑥𝑧) ∧ 𝑥𝐴))
39 ancom 465 . . . . . . . . . . 11 ((𝑧𝑋𝑥𝑧) ↔ (𝑥𝑧𝑧𝑋))
4039anbi1i 727 . . . . . . . . . 10 (((𝑧𝑋𝑥𝑧) ∧ 𝑥𝐴) ↔ ((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
4136, 38, 403bitri 285 . . . . . . . . 9 ((𝑧𝑋 ∧ ∃𝑦(𝑥𝑦𝑦 = (𝑧𝐴))) ↔ ((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
4217, 18, 413bitri 285 . . . . . . . 8 (∃𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
4342exbii 1764 . . . . . . 7 (∃𝑧𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ ∃𝑧((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
44 19.41v 1901 . . . . . . 7 (∃𝑧((𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴) ↔ (∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
4543, 44bitri 263 . . . . . 6 (∃𝑧𝑦(𝑥𝑦 ∧ (𝑧𝑋𝑦 = (𝑧𝐴))) ↔ (∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
4614, 15, 453bitri 285 . . . . 5 (∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ (∃𝑧(𝑥𝑧𝑧𝑋) ∧ 𝑥𝐴))
47 elin 3758 . . . . 5 (𝑥 ∈ ( 𝑋𝐴) ↔ (𝑥 𝑋𝑥𝐴))
488, 46, 473bitr4g 302 . . . 4 ((𝑋𝑉𝐴𝑊) → (∃𝑦(𝑥𝑦 ∧ ∃𝑧𝑋 𝑦 = (𝑧𝐴)) ↔ 𝑥 ∈ ( 𝑋𝐴)))
494, 48bitrd 267 . . 3 ((𝑋𝑉𝐴𝑊) → (∃𝑦(𝑥𝑦𝑦 ∈ (𝑋t 𝐴)) ↔ 𝑥 ∈ ( 𝑋𝐴)))
501, 49syl5bb 271 . 2 ((𝑋𝑉𝐴𝑊) → (𝑥 (𝑋t 𝐴) ↔ 𝑥 ∈ ( 𝑋𝐴)))
5150eqrdv 2608 1 ((𝑋𝑉𝐴𝑊) → (𝑋t 𝐴) = ( 𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wrex 2897  cin 3539   cuni 4372  (class class class)co 6549  t crest 15904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-rest 15906
This theorem is referenced by:  bj-restuni2  32232
  Copyright terms: Public domain W3C validator