Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rabeqd Structured version   Visualization version   GIF version

Theorem bj-rabeqd 32108
Description: Deduction form of rabeq 3166. Note that contrary to rabeq 3166 it has no dv condition. (Contributed by BJ, 27-Apr-2019.)
Hypotheses
Ref Expression
bj-rabeqd.nf 𝑥𝜑
bj-rabeqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
bj-rabeqd (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})

Proof of Theorem bj-rabeqd
StepHypRef Expression
1 bj-rabeqd.nf . 2 𝑥𝜑
2 bj-rabeqd.1 . . 3 (𝜑𝐴 = 𝐵)
3 eleq2 2677 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
43anbi1d 737 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜓)))
52, 4syl 17 . 2 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜓)))
61, 5bj-rabbida2 32105 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wnf 1699  wcel 1977  {crab 2900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-rab 2905
This theorem is referenced by:  bj-rabeqbid  32109  bj-rabeqbida  32110  bj-inrab2  32116
  Copyright terms: Public domain W3C validator