Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nftht Structured version   Visualization version   GIF version

Theorem bj-nftht 31769
Description: Closed form of nfth 1718. (Contributed by BJ, 6-May-2019.)
Assertion
Ref Expression
bj-nftht (∀𝑥𝜑 → ℲℲ𝑥𝜑)

Proof of Theorem bj-nftht
StepHypRef Expression
1 ax-1 6 . 2 (∀𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑))
2 df-bj-nf 31765 . 2 (ℲℲ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
31, 2sylibr 223 1 (∀𝑥𝜑 → ℲℲ𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473  wex 1695  ℲℲwnff 31764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-bj-nf 31765
This theorem is referenced by:  bj-nfth  31772
  Copyright terms: Public domain W3C validator