Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfntht2 Structured version   Visualization version   GIF version

Theorem bj-nfntht2 31771
Description: Closed form of nfnth 1719. (Contributed by BJ, 6-May-2019.)
Assertion
Ref Expression
bj-nfntht2 (∀𝑥 ¬ 𝜑 → ℲℲ𝑥𝜑)

Proof of Theorem bj-nfntht2
StepHypRef Expression
1 olc 398 . 2 (∀𝑥 ¬ 𝜑 → (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
2 bj-nf3 31767 . 2 (ℲℲ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
31, 2sylibr 223 1 (∀𝑥 ¬ 𝜑 → ℲℲ𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wal 1473  ℲℲwnff 31764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-or 384  df-ex 1696  df-bj-nf 31765
This theorem is referenced by:  bj-nfnth  31774
  Copyright terms: Public domain W3C validator