Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfn | Structured version Visualization version GIF version |
Description: A variable is non-free in a proposition if and only if it is so in its negation. Requires fewer axioms than nfn 1768. (Contributed by BJ, 6-May-2019.) |
Ref | Expression |
---|---|
bj-nfn | ⊢ (ℲℲ𝑥𝜑 ↔ ℲℲ𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb 303 | . . . . 5 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
2 | 1 | albii 1737 | . . . 4 ⊢ (∀𝑥𝜑 ↔ ∀𝑥 ¬ ¬ 𝜑) |
3 | 2 | orbi1i 541 | . . 3 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥 ¬ ¬ 𝜑 ∨ ∀𝑥 ¬ 𝜑)) |
4 | orcom 401 | . . 3 ⊢ ((∀𝑥 ¬ ¬ 𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑)) | |
5 | 3, 4 | bitri 263 | . 2 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑)) |
6 | bj-nf3 31767 | . 2 ⊢ (ℲℲ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) | |
7 | bj-nf3 31767 | . 2 ⊢ (ℲℲ𝑥 ¬ 𝜑 ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑)) | |
8 | 5, 6, 7 | 3bitr4i 291 | 1 ⊢ (ℲℲ𝑥𝜑 ↔ ℲℲ𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 195 ∨ wo 382 ∀wal 1473 ℲℲwnff 31764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 |
This theorem depends on definitions: df-bi 196 df-or 384 df-ex 1696 df-bj-nf 31765 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |