Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfab1 Structured version   Visualization version   GIF version

Theorem bj-nfab1 31973
 Description: Remove dependency on ax-13 2234 from nfab1 2753 (note the absence of DV conditions). (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nfab1 𝑥{𝑥𝜑}

Proof of Theorem bj-nfab1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bj-nfsab1 31960 . 2 𝑥 𝑦 ∈ {𝑥𝜑}
21nfci 2741 1 𝑥{𝑥𝜑}
 Colors of variables: wff setvar class Syntax hints:  {cab 2596  Ⅎwnfc 2738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-nfc 2740 This theorem is referenced by:  bj-sspwpwab  32239
 Copyright terms: Public domain W3C validator