Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nf2 Structured version   Visualization version   GIF version

Theorem bj-nf2 31766
Description: Alternate definition of df-bj-nf 31765. (Contributed by BJ, 6-May-2019.)
Assertion
Ref Expression
bj-nf2 (ℲℲ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑))

Proof of Theorem bj-nf2
StepHypRef Expression
1 df-bj-nf 31765 . 2 (ℲℲ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 imor 427 . 2 ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑))
3 orcom 401 . 2 ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑))
41, 2, 33bitri 285 1 (ℲℲ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wal 1473  wex 1695  ℲℲwnff 31764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-or 384  df-bj-nf 31765
This theorem is referenced by:  bj-nf3  31767  bj-nfntht  31770
  Copyright terms: Public domain W3C validator