Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nf2 | Structured version Visualization version GIF version |
Description: Alternate definition of df-bj-nf 31765. (Contributed by BJ, 6-May-2019.) |
Ref | Expression |
---|---|
bj-nf2 | ⊢ (ℲℲ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-nf 31765 | . 2 ⊢ (ℲℲ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
2 | imor 427 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑)) | |
3 | orcom 401 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑)) | |
4 | 1, 2, 3 | 3bitri 285 | 1 ⊢ (ℲℲ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∨ wo 382 ∀wal 1473 ∃wex 1695 ℲℲwnff 31764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-or 384 df-bj-nf 31765 |
This theorem is referenced by: bj-nf3 31767 bj-nfntht 31770 |
Copyright terms: Public domain | W3C validator |