Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbsb3v Structured version   Visualization version   GIF version

Theorem bj-hbsb3v 31949
 Description: Version of hbsb3 2352 with a dv condition, which does not require ax-13 2234. (Remark: the unbundled version of nfs1 2353 is given by bj-nfs1v 31947.) (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-hbsb3v.1 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
bj-hbsb3v ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-hbsb3v
StepHypRef Expression
1 bj-hbsb3v.1 . . 3 (𝜑 → ∀𝑦𝜑)
21sbimi 1873 . 2 ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]∀𝑦𝜑)
3 bj-hbsb2av 31948 . 2 ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
42, 3syl 17 1 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473  [wsb 1867 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator