Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-hbaeb | Structured version Visualization version GIF version |
Description: Biconditional version of hbae 2303. (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-hbaeb | ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧∀𝑥 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-hbaeb2 31993 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥∀𝑧 𝑥 = 𝑦) | |
2 | alcom 2024 | . 2 ⊢ (∀𝑥∀𝑧 𝑥 = 𝑦 ↔ ∀𝑧∀𝑥 𝑥 = 𝑦) | |
3 | 1, 2 | bitri 263 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧∀𝑥 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∀wal 1473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |