Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-godellob | Structured version Visualization version GIF version |
Description: Proof of Gödel's theorem from Löb's theorem (see comments at bj-babygodel 31761 and bj-babylob 31762 for details). (Contributed by BJ, 20-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-godellob.s | ⊢ (𝜑 ↔ ¬ Prv 𝜑) |
bj-godellob.1 | ⊢ ¬ Prv ⊥ |
Ref | Expression |
---|---|
bj-godellob | ⊢ ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-godellob.s | . . 3 ⊢ (𝜑 ↔ ¬ Prv 𝜑) | |
2 | dfnot 1493 | . . 3 ⊢ (¬ Prv 𝜑 ↔ (Prv 𝜑 → ⊥)) | |
3 | 1, 2 | bitri 263 | . 2 ⊢ (𝜑 ↔ (Prv 𝜑 → ⊥)) |
4 | bj-godellob.1 | . . 3 ⊢ ¬ Prv ⊥ | |
5 | 4 | pm2.21i 115 | . 2 ⊢ (Prv ⊥ → ⊥) |
6 | 3, 5 | bj-babylob 31762 | 1 ⊢ ⊥ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ⊥wfal 1480 Prv cprvb 31755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-prv1 31756 ax-prv2 31757 ax-prv3 31758 |
This theorem depends on definitions: df-bi 196 df-tru 1478 df-fal 1481 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |