Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-drnf2v Structured version   Visualization version   GIF version

Theorem bj-drnf2v 31939
Description: Version of drnf2 2318 with a dv condition, which does not require ax-13 2234. Could be labeled "nfbidv". Note that the version of axc15 2291 with a dv condition is actually ax12v2 2036 (up to adding a superfluous antecedent). (Contributed by BJ, 17-Jun-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-drnf2v.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bj-drnf2v (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem bj-drnf2v
StepHypRef Expression
1 nfv 1830 . 2 𝑧𝑥 𝑥 = 𝑦
2 bj-drnf2v.1 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
31, 2nfbidf 2079 1 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wal 1473  wnf 1699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-ex 1696  df-nf 1701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator