 Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-consensus Structured version   Visualization version   GIF version

Theorem bj-consensus 31732
 Description: Version of consensus 990 expressed using the conditional operator. (Remark: it may be better to express it as consensus 990, using only binary connectives, and hinting at the fact that it is a Boolean algebra identity, like the absorption identities.) (Contributed by BJ, 30-Sep-2019.)
Assertion
Ref Expression
bj-consensus ((if-(𝜑, 𝜓, 𝜒) ∨ (𝜓𝜒)) ↔ if-(𝜑, 𝜓, 𝜒))

Proof of Theorem bj-consensus
StepHypRef Expression
1 anifp 1014 . . 3 ((𝜓𝜒) → if-(𝜑, 𝜓, 𝜒))
21bj-jaoi2 31727 . 2 ((if-(𝜑, 𝜓, 𝜒) ∨ (𝜓𝜒)) → if-(𝜑, 𝜓, 𝜒))
3 orc 399 . 2 (if-(𝜑, 𝜓, 𝜒) → (if-(𝜑, 𝜓, 𝜒) ∨ (𝜓𝜒)))
42, 3impbii 198 1 ((if-(𝜑, 𝜓, 𝜒) ∨ (𝜓𝜒)) ↔ if-(𝜑, 𝜓, 𝜒))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∨ wo 382   ∧ wa 383  if-wif 1006 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator