Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-con2comi Structured version   Visualization version   GIF version

Theorem bj-con2comi 31719
Description: Inference associated with bj-con2com 31718. Its associated inference is mt2 190. TODO: when in the main part, add to mt2 190 that it is the inference associated with bj-con2comi 31719. (Contributed by BJ, 19-Mar-2020.)
Hypothesis
Ref Expression
bj-con2comi.1 𝜑
Assertion
Ref Expression
bj-con2comi ((𝜓 → ¬ 𝜑) → ¬ 𝜓)

Proof of Theorem bj-con2comi
StepHypRef Expression
1 bj-con2comi.1 . 2 𝜑
2 bj-con2com 31718 . 2 (𝜑 → ((𝜓 → ¬ 𝜑) → ¬ 𝜓))
31, 2ax-mp 5 1 ((𝜓 → ¬ 𝜑) → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator