Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-clex | Structured version Visualization version GIF version |
Description: Sethood of certain classes. (Contributed by BJ, 2-Apr-2019.) |
Ref | Expression |
---|---|
bj-clex | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐵)} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaexg 6995 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) | |
2 | bj-snsetex 32144 | . 2 ⊢ ((𝐴 “ 𝐵) ∈ V → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐵)} ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ {𝑥} ∈ (𝐴 “ 𝐵)} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1977 {cab 2596 Vcvv 3173 {csn 4125 “ cima 5041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-xp 5044 df-cnv 5046 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 |
This theorem is referenced by: bj-projex 32176 |
Copyright terms: Public domain | W3C validator |