Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cbv1hv Structured version   Visualization version   GIF version

Theorem bj-cbv1hv 31917
 Description: Version of cbv1h 2256 with a dv condition, which does not require ax-13 2234. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-cbv1hv.1 (𝜑 → (𝜓 → ∀𝑦𝜓))
bj-cbv1hv.2 (𝜑 → (𝜒 → ∀𝑥𝜒))
bj-cbv1hv.3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
bj-cbv1hv (∀𝑥𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem bj-cbv1hv
StepHypRef Expression
1 nfa1 2015 . 2 𝑥𝑥𝑦𝜑
2 nfa2 2027 . 2 𝑦𝑥𝑦𝜑
3 2sp 2044 . . . 4 (∀𝑥𝑦𝜑𝜑)
4 bj-cbv1hv.1 . . . 4 (𝜑 → (𝜓 → ∀𝑦𝜓))
53, 4syl 17 . . 3 (∀𝑥𝑦𝜑 → (𝜓 → ∀𝑦𝜓))
62, 5nf5d 2104 . 2 (∀𝑥𝑦𝜑 → Ⅎ𝑦𝜓)
7 bj-cbv1hv.2 . . . 4 (𝜑 → (𝜒 → ∀𝑥𝜒))
83, 7syl 17 . . 3 (∀𝑥𝑦𝜑 → (𝜒 → ∀𝑥𝜒))
91, 8nf5d 2104 . 2 (∀𝑥𝑦𝜑 → Ⅎ𝑥𝜒)
10 bj-cbv1hv.3 . . 3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
113, 10syl 17 . 2 (∀𝑥𝑦𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
121, 2, 6, 9, 11bj-cbv1v 31916 1 (∀𝑥𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-or 384  df-ex 1696  df-nf 1701 This theorem is referenced by:  bj-cbv2hv  31918
 Copyright terms: Public domain W3C validator