Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1lem1 Structured version   Visualization version   GIF version

Theorem bj-bary1lem1 32338
Description: Existence and uniqueness (and actual computation) of barycentric coordinates in dimension 1 (complex line). (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a (𝜑𝐴 ∈ ℂ)
bj-bary1.b (𝜑𝐵 ∈ ℂ)
bj-bary1.x (𝜑𝑋 ∈ ℂ)
bj-bary1.neq (𝜑𝐴𝐵)
bj-bary1.s (𝜑𝑆 ∈ ℂ)
bj-bary1.t (𝜑𝑇 ∈ ℂ)
Assertion
Ref Expression
bj-bary1lem1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))

Proof of Theorem bj-bary1lem1
StepHypRef Expression
1 bj-bary1.s . . . . . . 7 (𝜑𝑆 ∈ ℂ)
2 bj-bary1.t . . . . . . 7 (𝜑𝑇 ∈ ℂ)
31, 2pncand 10272 . . . . . 6 (𝜑 → ((𝑆 + 𝑇) − 𝑇) = 𝑆)
4 oveq1 6556 . . . . . 6 ((𝑆 + 𝑇) = 1 → ((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇))
5 pm5.31 610 . . . . . 6 ((((𝑆 + 𝑇) − 𝑇) = 𝑆 ∧ ((𝑆 + 𝑇) = 1 → ((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇))) → ((𝑆 + 𝑇) = 1 → (((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆)))
63, 4, 5sylancl 693 . . . . 5 (𝜑 → ((𝑆 + 𝑇) = 1 → (((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆)))
7 eqtr2 2630 . . . . . 6 ((((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆) → (1 − 𝑇) = 𝑆)
87eqcomd 2616 . . . . 5 ((((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆) → 𝑆 = (1 − 𝑇))
96, 8syl6 34 . . . 4 (𝜑 → ((𝑆 + 𝑇) = 1 → 𝑆 = (1 − 𝑇)))
10 oveq1 6556 . . . . . . . 8 (𝑆 = (1 − 𝑇) → (𝑆 · 𝐴) = ((1 − 𝑇) · 𝐴))
1110oveq1d 6564 . . . . . . 7 (𝑆 = (1 − 𝑇) → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
12 eqtr 2629 . . . . . . 7 ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵))) → 𝑋 = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
1311, 12sylan2 490 . . . . . 6 ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ 𝑆 = (1 − 𝑇)) → 𝑋 = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
14 1cnd 9935 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
15 bj-bary1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1614, 2, 15subdird 10366 . . . . . . . 8 (𝜑 → ((1 − 𝑇) · 𝐴) = ((1 · 𝐴) − (𝑇 · 𝐴)))
1715mulid2d 9937 . . . . . . . . 9 (𝜑 → (1 · 𝐴) = 𝐴)
1817oveq1d 6564 . . . . . . . 8 (𝜑 → ((1 · 𝐴) − (𝑇 · 𝐴)) = (𝐴 − (𝑇 · 𝐴)))
1916, 18eqtrd 2644 . . . . . . 7 (𝜑 → ((1 − 𝑇) · 𝐴) = (𝐴 − (𝑇 · 𝐴)))
2019oveq1d 6564 . . . . . 6 (𝜑 → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)))
2113, 20sylan9eqr 2666 . . . . 5 ((𝜑 ∧ (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ 𝑆 = (1 − 𝑇))) → 𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)))
2221ex 449 . . . 4 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ 𝑆 = (1 − 𝑇)) → 𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵))))
239, 22sylan2d 498 . . 3 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵))))
242, 15mulcld 9939 . . . . . 6 (𝜑 → (𝑇 · 𝐴) ∈ ℂ)
25 bj-bary1.b . . . . . . 7 (𝜑𝐵 ∈ ℂ)
262, 25mulcld 9939 . . . . . 6 (𝜑 → (𝑇 · 𝐵) ∈ ℂ)
2715, 24, 26subadd23d 10293 . . . . 5 (𝜑 → ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)) = (𝐴 + ((𝑇 · 𝐵) − (𝑇 · 𝐴))))
282, 25, 15subdid 10365 . . . . . . 7 (𝜑 → (𝑇 · (𝐵𝐴)) = ((𝑇 · 𝐵) − (𝑇 · 𝐴)))
2928eqcomd 2616 . . . . . 6 (𝜑 → ((𝑇 · 𝐵) − (𝑇 · 𝐴)) = (𝑇 · (𝐵𝐴)))
3029oveq2d 6565 . . . . 5 (𝜑 → (𝐴 + ((𝑇 · 𝐵) − (𝑇 · 𝐴))) = (𝐴 + (𝑇 · (𝐵𝐴))))
3127, 30eqtrd 2644 . . . 4 (𝜑 → ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)) = (𝐴 + (𝑇 · (𝐵𝐴))))
3231eqeq2d 2620 . . 3 (𝜑 → (𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)) ↔ 𝑋 = (𝐴 + (𝑇 · (𝐵𝐴)))))
3323, 32sylibd 228 . 2 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑋 = (𝐴 + (𝑇 · (𝐵𝐴)))))
34 oveq1 6556 . . 3 (𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))) → (𝑋𝐴) = ((𝐴 + (𝑇 · (𝐵𝐴))) − 𝐴))
3525, 15subcld 10271 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
362, 35mulcld 9939 . . . . 5 (𝜑 → (𝑇 · (𝐵𝐴)) ∈ ℂ)
3715, 36pncan2d 10273 . . . 4 (𝜑 → ((𝐴 + (𝑇 · (𝐵𝐴))) − 𝐴) = (𝑇 · (𝐵𝐴)))
3837eqeq2d 2620 . . 3 (𝜑 → ((𝑋𝐴) = ((𝐴 + (𝑇 · (𝐵𝐴))) − 𝐴) ↔ (𝑋𝐴) = (𝑇 · (𝐵𝐴))))
3934, 38syl5ib 233 . 2 (𝜑 → (𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))) → (𝑋𝐴) = (𝑇 · (𝐵𝐴))))
40 eqcom 2617 . . 3 ((𝑋𝐴) = (𝑇 · (𝐵𝐴)) ↔ (𝑇 · (𝐵𝐴)) = (𝑋𝐴))
412, 35mulcomd 9940 . . . . 5 (𝜑 → (𝑇 · (𝐵𝐴)) = ((𝐵𝐴) · 𝑇))
4241eqeq1d 2612 . . . 4 (𝜑 → ((𝑇 · (𝐵𝐴)) = (𝑋𝐴) ↔ ((𝐵𝐴) · 𝑇) = (𝑋𝐴)))
43 bj-bary1.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
4443, 15subcld 10271 . . . . . 6 (𝜑 → (𝑋𝐴) ∈ ℂ)
45 bj-bary1.neq . . . . . . . 8 (𝜑𝐴𝐵)
4645necomd 2837 . . . . . . 7 (𝜑𝐵𝐴)
4725, 15, 46subne0d 10280 . . . . . 6 (𝜑 → (𝐵𝐴) ≠ 0)
4835, 2, 44, 47bj-rdiv 32333 . . . . 5 (𝜑 → (((𝐵𝐴) · 𝑇) = (𝑋𝐴) ↔ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
4948biimpd 218 . . . 4 (𝜑 → (((𝐵𝐴) · 𝑇) = (𝑋𝐴) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
5042, 49sylbid 229 . . 3 (𝜑 → ((𝑇 · (𝐵𝐴)) = (𝑋𝐴) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
5140, 50syl5bi 231 . 2 (𝜑 → ((𝑋𝐴) = (𝑇 · (𝐵𝐴)) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
5233, 39, 513syld 58 1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  (class class class)co 6549  cc 9813  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145   / cdiv 10563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564
This theorem is referenced by:  bj-bary1  32339
  Copyright terms: Public domain W3C validator