Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1lem Structured version   Visualization version   GIF version

Theorem bj-bary1lem 32337
Description: A lemma for barycentric coordinates in one dimension. (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a (𝜑𝐴 ∈ ℂ)
bj-bary1.b (𝜑𝐵 ∈ ℂ)
bj-bary1.x (𝜑𝑋 ∈ ℂ)
bj-bary1.neq (𝜑𝐴𝐵)
Assertion
Ref Expression
bj-bary1lem (𝜑𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))

Proof of Theorem bj-bary1lem
StepHypRef Expression
1 bj-bary1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
2 bj-bary1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
31, 2mulcld 9939 . . . . . . . . 9 (𝜑 → (𝐵 · 𝐴) ∈ ℂ)
4 bj-bary1.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
54, 2mulcld 9939 . . . . . . . . 9 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
63, 5subcld 10271 . . . . . . . 8 (𝜑 → ((𝐵 · 𝐴) − (𝑋 · 𝐴)) ∈ ℂ)
74, 1mulcld 9939 . . . . . . . 8 (𝜑 → (𝑋 · 𝐵) ∈ ℂ)
82, 1mulcld 9939 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
96, 7, 8addsub12d 10294 . . . . . . 7 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) + (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵))))
103, 5, 8sub32d 10303 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵)) = (((𝐵 · 𝐴) − (𝐴 · 𝐵)) − (𝑋 · 𝐴)))
111, 2bj-subcom 32331 . . . . . . . . . 10 (𝜑 → ((𝐵 · 𝐴) − (𝐴 · 𝐵)) = 0)
1211oveq1d 6564 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐴) − (𝐴 · 𝐵)) − (𝑋 · 𝐴)) = (0 − (𝑋 · 𝐴)))
1310, 12eqtrd 2644 . . . . . . . 8 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵)) = (0 − (𝑋 · 𝐴)))
1413oveq2d 6565 . . . . . . 7 (𝜑 → ((𝑋 · 𝐵) + (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) + (0 − (𝑋 · 𝐴))))
159, 14eqtrd 2644 . . . . . 6 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) + (0 − (𝑋 · 𝐴))))
16 0cnd 9912 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
177, 16, 5addsubassd 10291 . . . . . 6 (𝜑 → (((𝑋 · 𝐵) + 0) − (𝑋 · 𝐴)) = ((𝑋 · 𝐵) + (0 − (𝑋 · 𝐴))))
187addid1d 10115 . . . . . . 7 (𝜑 → ((𝑋 · 𝐵) + 0) = (𝑋 · 𝐵))
1918oveq1d 6564 . . . . . 6 (𝜑 → (((𝑋 · 𝐵) + 0) − (𝑋 · 𝐴)) = ((𝑋 · 𝐵) − (𝑋 · 𝐴)))
2015, 17, 193eqtr2d 2650 . . . . 5 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) − (𝑋 · 𝐴)))
211, 4, 2subdird 10366 . . . . . 6 (𝜑 → ((𝐵𝑋) · 𝐴) = ((𝐵 · 𝐴) − (𝑋 · 𝐴)))
224, 2, 1subdird 10366 . . . . . 6 (𝜑 → ((𝑋𝐴) · 𝐵) = ((𝑋 · 𝐵) − (𝐴 · 𝐵)))
2321, 22oveq12d 6567 . . . . 5 (𝜑 → (((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)) = (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))))
244, 1, 2subdid 10365 . . . . 5 (𝜑 → (𝑋 · (𝐵𝐴)) = ((𝑋 · 𝐵) − (𝑋 · 𝐴)))
2520, 23, 243eqtr4rd 2655 . . . 4 (𝜑 → (𝑋 · (𝐵𝐴)) = (((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)))
2625oveq1d 6564 . . 3 (𝜑 → ((𝑋 · (𝐵𝐴)) / (𝐵𝐴)) = ((((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)) / (𝐵𝐴)))
271, 4subcld 10271 . . . . 5 (𝜑 → (𝐵𝑋) ∈ ℂ)
2827, 2mulcld 9939 . . . 4 (𝜑 → ((𝐵𝑋) · 𝐴) ∈ ℂ)
294, 2subcld 10271 . . . . 5 (𝜑 → (𝑋𝐴) ∈ ℂ)
3029, 1mulcld 9939 . . . 4 (𝜑 → ((𝑋𝐴) · 𝐵) ∈ ℂ)
311, 2subcld 10271 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
32 bj-bary1.neq . . . . . 6 (𝜑𝐴𝐵)
3332necomd 2837 . . . . 5 (𝜑𝐵𝐴)
341, 2, 33subne0d 10280 . . . 4 (𝜑 → (𝐵𝐴) ≠ 0)
3528, 30, 31, 34divdird 10718 . . 3 (𝜑 → ((((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)) / (𝐵𝐴)) = ((((𝐵𝑋) · 𝐴) / (𝐵𝐴)) + (((𝑋𝐴) · 𝐵) / (𝐵𝐴))))
3626, 35eqtrd 2644 . 2 (𝜑 → ((𝑋 · (𝐵𝐴)) / (𝐵𝐴)) = ((((𝐵𝑋) · 𝐴) / (𝐵𝐴)) + (((𝑋𝐴) · 𝐵) / (𝐵𝐴))))
374, 31, 34divcan4d 10686 . 2 (𝜑 → ((𝑋 · (𝐵𝐴)) / (𝐵𝐴)) = 𝑋)
3827, 2, 31, 34div23d 10717 . . 3 (𝜑 → (((𝐵𝑋) · 𝐴) / (𝐵𝐴)) = (((𝐵𝑋) / (𝐵𝐴)) · 𝐴))
3929, 1, 31, 34div23d 10717 . . 3 (𝜑 → (((𝑋𝐴) · 𝐵) / (𝐵𝐴)) = (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))
4038, 39oveq12d 6567 . 2 (𝜑 → ((((𝐵𝑋) · 𝐴) / (𝐵𝐴)) + (((𝑋𝐴) · 𝐵) / (𝐵𝐴))) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
4136, 37, 403eqtr3d 2652 1 (𝜑𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wne 2780  (class class class)co 6549  cc 9813  0cc0 9815   + caddc 9818   · cmul 9820  cmin 10145   / cdiv 10563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564
This theorem is referenced by:  bj-bary1  32339
  Copyright terms: Public domain W3C validator