Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1 Structured version   Visualization version   GIF version

Theorem bj-bary1 32339
Description: Barycentric coordinates in one dimension. (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a (𝜑𝐴 ∈ ℂ)
bj-bary1.b (𝜑𝐵 ∈ ℂ)
bj-bary1.x (𝜑𝑋 ∈ ℂ)
bj-bary1.neq (𝜑𝐴𝐵)
bj-bary1.s (𝜑𝑆 ∈ ℂ)
bj-bary1.t (𝜑𝑇 ∈ ℂ)
Assertion
Ref Expression
bj-bary1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) ↔ (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴)))))

Proof of Theorem bj-bary1
StepHypRef Expression
1 bj-bary1.s . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
2 bj-bary1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
31, 2mulcld 9939 . . . . . . . 8 (𝜑 → (𝑆 · 𝐴) ∈ ℂ)
4 bj-bary1.t . . . . . . . . 9 (𝜑𝑇 ∈ ℂ)
5 bj-bary1.b . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
64, 5mulcld 9939 . . . . . . . 8 (𝜑 → (𝑇 · 𝐵) ∈ ℂ)
73, 6addcomd 10117 . . . . . . 7 (𝜑 → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + (𝑆 · 𝐴)))
87eqeq2d 2620 . . . . . 6 (𝜑 → (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ↔ 𝑋 = ((𝑇 · 𝐵) + (𝑆 · 𝐴))))
98biimpd 218 . . . . 5 (𝜑 → (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) → 𝑋 = ((𝑇 · 𝐵) + (𝑆 · 𝐴))))
101, 4addcomd 10117 . . . . . . 7 (𝜑 → (𝑆 + 𝑇) = (𝑇 + 𝑆))
1110eqeq1d 2612 . . . . . 6 (𝜑 → ((𝑆 + 𝑇) = 1 ↔ (𝑇 + 𝑆) = 1))
1211biimpd 218 . . . . 5 (𝜑 → ((𝑆 + 𝑇) = 1 → (𝑇 + 𝑆) = 1))
13 bj-bary1.x . . . . . 6 (𝜑𝑋 ∈ ℂ)
14 bj-bary1.neq . . . . . . 7 (𝜑𝐴𝐵)
1514necomd 2837 . . . . . 6 (𝜑𝐵𝐴)
165, 2, 13, 15, 4, 1bj-bary1lem1 32338 . . . . 5 (𝜑 → ((𝑋 = ((𝑇 · 𝐵) + (𝑆 · 𝐴)) ∧ (𝑇 + 𝑆) = 1) → 𝑆 = ((𝑋𝐵) / (𝐴𝐵))))
179, 12, 16syl2and 499 . . . 4 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑆 = ((𝑋𝐵) / (𝐴𝐵))))
1813, 5, 2, 5, 14div2subd 10730 . . . . 5 (𝜑 → ((𝑋𝐵) / (𝐴𝐵)) = ((𝐵𝑋) / (𝐵𝐴)))
1918eqeq2d 2620 . . . 4 (𝜑 → (𝑆 = ((𝑋𝐵) / (𝐴𝐵)) ↔ 𝑆 = ((𝐵𝑋) / (𝐵𝐴))))
2017, 19sylibd 228 . . 3 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑆 = ((𝐵𝑋) / (𝐵𝐴))))
212, 5, 13, 14, 1, 4bj-bary1lem1 32338 . . 3 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
2220, 21jcad 554 . 2 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴)))))
232, 5, 13, 14bj-bary1lem 32337 . . . 4 (𝜑𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
24 oveq1 6556 . . . . . 6 (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) → (𝑆 · 𝐴) = (((𝐵𝑋) / (𝐵𝐴)) · 𝐴))
25 oveq1 6556 . . . . . 6 (𝑇 = ((𝑋𝐴) / (𝐵𝐴)) → (𝑇 · 𝐵) = (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))
2624, 25oveqan12d 6568 . . . . 5 ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
2726a1i 11 . . . 4 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))))
28 eqtr3 2631 . . . 4 ((𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)) ∧ ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))) → 𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)))
2923, 27, 28syl6an 566 . . 3 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → 𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵))))
30 oveq12 6558 . . . 4 ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → (𝑆 + 𝑇) = (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))))
315, 13subcld 10271 . . . . . . 7 (𝜑 → (𝐵𝑋) ∈ ℂ)
3213, 2subcld 10271 . . . . . . 7 (𝜑 → (𝑋𝐴) ∈ ℂ)
335, 2subcld 10271 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℂ)
345, 2, 15subne0d 10280 . . . . . . 7 (𝜑 → (𝐵𝐴) ≠ 0)
3531, 32, 33, 34divdird 10718 . . . . . 6 (𝜑 → (((𝐵𝑋) + (𝑋𝐴)) / (𝐵𝐴)) = (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))))
365, 13, 2npncand 10295 . . . . . . 7 (𝜑 → ((𝐵𝑋) + (𝑋𝐴)) = (𝐵𝐴))
3733, 34, 36diveq1bd 10728 . . . . . 6 (𝜑 → (((𝐵𝑋) + (𝑋𝐴)) / (𝐵𝐴)) = 1)
3835, 37eqtr3d 2646 . . . . 5 (𝜑 → (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))) = 1)
3938eqeq2d 2620 . . . 4 (𝜑 → ((𝑆 + 𝑇) = (((𝐵𝑋) / (𝐵𝐴)) + ((𝑋𝐴) / (𝐵𝐴))) ↔ (𝑆 + 𝑇) = 1))
4030, 39syl5ib 233 . . 3 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → (𝑆 + 𝑇) = 1))
4129, 40jcad 554 . 2 (𝜑 → ((𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))) → (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1)))
4222, 41impbid 201 1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) ↔ (𝑆 = ((𝐵𝑋) / (𝐵𝐴)) ∧ 𝑇 = ((𝑋𝐴) / (𝐵𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  (class class class)co 6549  cc 9813  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145   / cdiv 10563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator