Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axsep Structured version   Visualization version   GIF version

Theorem bj-axsep 31981
Description: Remove dependency on ax-13 2234 from axsep 4708. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axsep 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑦,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bj-axsep
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1830 . . . 4 𝑦(𝑤 = 𝑥𝜑)
21bj-axrep5 31980 . . 3 (∀𝑤(𝑤𝑧 → ∃𝑦𝑥((𝑤 = 𝑥𝜑) → 𝑥 = 𝑦)) → ∃𝑦𝑥(𝑥𝑦 ↔ ∃𝑤(𝑤𝑧 ∧ (𝑤 = 𝑥𝜑))))
3 equtr 1935 . . . . . . . 8 (𝑦 = 𝑤 → (𝑤 = 𝑥𝑦 = 𝑥))
4 equcomi 1931 . . . . . . . 8 (𝑦 = 𝑥𝑥 = 𝑦)
53, 4syl6 34 . . . . . . 7 (𝑦 = 𝑤 → (𝑤 = 𝑥𝑥 = 𝑦))
65adantrd 483 . . . . . 6 (𝑦 = 𝑤 → ((𝑤 = 𝑥𝜑) → 𝑥 = 𝑦))
76alrimiv 1842 . . . . 5 (𝑦 = 𝑤 → ∀𝑥((𝑤 = 𝑥𝜑) → 𝑥 = 𝑦))
87a1d 25 . . . 4 (𝑦 = 𝑤 → (𝑤𝑧 → ∀𝑥((𝑤 = 𝑥𝜑) → 𝑥 = 𝑦)))
98bj-spimevv 31909 . . 3 (𝑤𝑧 → ∃𝑦𝑥((𝑤 = 𝑥𝜑) → 𝑥 = 𝑦))
102, 9mpg 1715 . 2 𝑦𝑥(𝑥𝑦 ↔ ∃𝑤(𝑤𝑧 ∧ (𝑤 = 𝑥𝜑)))
11 an12 834 . . . . . . 7 ((𝑤 = 𝑥 ∧ (𝑤𝑧𝜑)) ↔ (𝑤𝑧 ∧ (𝑤 = 𝑥𝜑)))
1211exbii 1764 . . . . . 6 (∃𝑤(𝑤 = 𝑥 ∧ (𝑤𝑧𝜑)) ↔ ∃𝑤(𝑤𝑧 ∧ (𝑤 = 𝑥𝜑)))
13 elequ1 1984 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤𝑧𝑥𝑧))
1413anbi1d 737 . . . . . . 7 (𝑤 = 𝑥 → ((𝑤𝑧𝜑) ↔ (𝑥𝑧𝜑)))
1514equsexvw 1919 . . . . . 6 (∃𝑤(𝑤 = 𝑥 ∧ (𝑤𝑧𝜑)) ↔ (𝑥𝑧𝜑))
1612, 15bitr3i 265 . . . . 5 (∃𝑤(𝑤𝑧 ∧ (𝑤 = 𝑥𝜑)) ↔ (𝑥𝑧𝜑))
1716bibi2i 326 . . . 4 ((𝑥𝑦 ↔ ∃𝑤(𝑤𝑧 ∧ (𝑤 = 𝑥𝜑))) ↔ (𝑥𝑦 ↔ (𝑥𝑧𝜑)))
1817albii 1737 . . 3 (∀𝑥(𝑥𝑦 ↔ ∃𝑤(𝑤𝑧 ∧ (𝑤 = 𝑥𝜑))) ↔ ∀𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑)))
1918exbii 1764 . 2 (∃𝑦𝑥(𝑥𝑦 ↔ ∃𝑤(𝑤𝑧 ∧ (𝑤 = 𝑥𝜑))) ↔ ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑)))
2010, 19mpbi 219 1 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473  wex 1695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-rep 4699
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator