Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-alrimhi | Structured version Visualization version GIF version |
Description: An inference associated with sylgt 1739 and bj-exlimh 31787. (Contributed by BJ, 12-May-2019.) |
Ref | Expression |
---|---|
bj-alrimhi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
bj-alrimhi | ⊢ (ℲℲ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-nf 31765 | . . 3 ⊢ (ℲℲ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
2 | 1 | biimpi 205 | . 2 ⊢ (ℲℲ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
3 | bj-alrimhi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
4 | 3 | alimi 1730 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
5 | 2, 4 | syl6 34 | 1 ⊢ (ℲℲ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 ∃wex 1695 ℲℲwnff 31764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 |
This theorem depends on definitions: df-bi 196 df-bj-nf 31765 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |