Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ablssgrp Structured version   Visualization version   GIF version

Theorem bj-ablssgrp 32315
 Description: Abelian groups are groups. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ablssgrp Abel ⊆ Grp

Proof of Theorem bj-ablssgrp
StepHypRef Expression
1 df-abl 18019 . 2 Abel = (Grp ∩ CMnd)
2 inss1 3795 . 2 (Grp ∩ CMnd) ⊆ Grp
31, 2eqsstri 3598 1 Abel ⊆ Grp
 Colors of variables: wff setvar class Syntax hints:   ∩ cin 3539   ⊆ wss 3540  Grpcgrp 17245  CMndccmn 18016  Abelcabl 18017 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-in 3547  df-ss 3554  df-abl 18019 This theorem is referenced by:  bj-ablssgrpel  32316
 Copyright terms: Public domain W3C validator