Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-abeq2 Structured version   Visualization version   GIF version

Theorem bj-abeq2 31961
Description: Remove dependency on ax-13 2234 from abeq2 2719. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-abeq2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bj-abeq2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-5 1827 . . 3 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
2 bj-hbab1 31959 . . 3 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
31, 2cleqh 2711 . 2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝜑}))
4 abid 2598 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
54bibi2i 326 . . 3 ((𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ (𝑥𝐴𝜑))
65albii 1737 . 2 (∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ ∀𝑥(𝑥𝐴𝜑))
73, 6bitri 263 1 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wal 1473   = wceq 1475  wcel 1977  {cab 2596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606
This theorem is referenced by:  bj-abeq1  31962  bj-abbi2i  31964  bj-abbi2dv  31968  bj-clabel  31971  bj-ru1  32125
  Copyright terms: Public domain W3C validator