Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-abbii Structured version   Visualization version   GIF version

Theorem bj-abbii 31965
 Description: Remove dependency on ax-13 2234 from abbii 2726. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-abbii.1 (𝜑𝜓)
Assertion
Ref Expression
bj-abbii {𝑥𝜑} = {𝑥𝜓}

Proof of Theorem bj-abbii
StepHypRef Expression
1 bj-abbi 31963 . 2 (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
2 bj-abbii.1 . 2 (𝜑𝜓)
31, 2mpgbi 1716 1 {𝑥𝜑} = {𝑥𝜓}
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   = wceq 1475  {cab 2596 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603 This theorem is referenced by:  bj-rababwv  32061
 Copyright terms: Public domain W3C validator