Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-2uplth Structured version   Visualization version   GIF version

Theorem bj-2uplth 32202
 Description: The characteristic property of couples. Note that this holds without sethood hypotheses (compare opth 4871). (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-2uplth (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem bj-2uplth
StepHypRef Expression
1 bj-pr1eq 32183 . . . 4 (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → pr1𝐴, 𝐵⦆ = pr1𝐶, 𝐷⦆)
2 bj-pr21val 32194 . . . 4 pr1𝐴, 𝐵⦆ = 𝐴
3 bj-pr21val 32194 . . . 4 pr1𝐶, 𝐷⦆ = 𝐶
41, 2, 33eqtr3g 2667 . . 3 (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → 𝐴 = 𝐶)
5 bj-pr2eq 32197 . . . 4 (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → pr2𝐴, 𝐵⦆ = pr2𝐶, 𝐷⦆)
6 bj-pr22val 32200 . . . 4 pr2𝐴, 𝐵⦆ = 𝐵
7 bj-pr22val 32200 . . . 4 pr2𝐶, 𝐷⦆ = 𝐷
85, 6, 73eqtr3g 2667 . . 3 (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → 𝐵 = 𝐷)
94, 8jca 553 . 2 (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ → (𝐴 = 𝐶𝐵 = 𝐷))
10 bj-2upleq 32193 . . 3 (𝐴 = 𝐶 → (𝐵 = 𝐷 → ⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆))
1110imp 444 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → ⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆)
129, 11impbii 198 1 (⦅𝐴, 𝐵⦆ = ⦅𝐶, 𝐷⦆ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475  pr1 bj-cpr1 32181  ⦅bj-c2uple 32191  pr2 bj-cpr2 32195 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-suc 5646  df-1o 7447  df-bj-sngl 32147  df-bj-tag 32156  df-bj-proj 32172  df-bj-1upl 32179  df-bj-pr1 32182  df-bj-2upl 32192  df-bj-pr2 32196 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator