Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemwb Structured version   Visualization version   GIF version

Theorem binomcxplemwb 37569
Description: Lemma for binomcxp 37578. The lemma in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxplem.c (𝜑𝐶 ∈ ℂ)
binomcxplem.k (𝜑𝐾 ∈ ℕ)
Assertion
Ref Expression
binomcxplemwb (𝜑 → (((𝐶𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = (𝐶 · (𝐶C𝑐𝐾)))

Proof of Theorem binomcxplemwb
StepHypRef Expression
1 binomcxplem.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
2 binomcxplem.k . . . . . . 7 (𝜑𝐾 ∈ ℕ)
32nncnd 10913 . . . . . 6 (𝜑𝐾 ∈ ℂ)
41, 3npcand 10275 . . . . 5 (𝜑 → ((𝐶𝐾) + 𝐾) = 𝐶)
54oveq1d 6564 . . . 4 (𝜑 → (((𝐶𝐾) + 𝐾) · (𝐶 FallFac 𝐾)) = (𝐶 · (𝐶 FallFac 𝐾)))
61, 3subcld 10271 . . . . 5 (𝜑 → (𝐶𝐾) ∈ ℂ)
72nnnn0d 11228 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
8 fallfaccl 14586 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝐶 FallFac 𝐾) ∈ ℂ)
91, 7, 8syl2anc 691 . . . . 5 (𝜑 → (𝐶 FallFac 𝐾) ∈ ℂ)
106, 3, 9adddird 9944 . . . 4 (𝜑 → (((𝐶𝐾) + 𝐾) · (𝐶 FallFac 𝐾)) = (((𝐶𝐾) · (𝐶 FallFac 𝐾)) + (𝐾 · (𝐶 FallFac 𝐾))))
115, 10eqtr3d 2646 . . 3 (𝜑 → (𝐶 · (𝐶 FallFac 𝐾)) = (((𝐶𝐾) · (𝐶 FallFac 𝐾)) + (𝐾 · (𝐶 FallFac 𝐾))))
1211oveq1d 6564 . 2 (𝜑 → ((𝐶 · (𝐶 FallFac 𝐾)) / (!‘𝐾)) = ((((𝐶𝐾) · (𝐶 FallFac 𝐾)) + (𝐾 · (𝐶 FallFac 𝐾))) / (!‘𝐾)))
131, 7bccval 37559 . . . 4 (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾)))
1413oveq2d 6565 . . 3 (𝜑 → (𝐶 · (𝐶C𝑐𝐾)) = (𝐶 · ((𝐶 FallFac 𝐾) / (!‘𝐾))))
15 faccl 12932 . . . . . 6 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
1615nncnd 10913 . . . . 5 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℂ)
177, 16syl 17 . . . 4 (𝜑 → (!‘𝐾) ∈ ℂ)
18 facne0 12935 . . . . 5 (𝐾 ∈ ℕ0 → (!‘𝐾) ≠ 0)
197, 18syl 17 . . . 4 (𝜑 → (!‘𝐾) ≠ 0)
201, 9, 17, 19divassd 10715 . . 3 (𝜑 → ((𝐶 · (𝐶 FallFac 𝐾)) / (!‘𝐾)) = (𝐶 · ((𝐶 FallFac 𝐾) / (!‘𝐾))))
2114, 20eqtr4d 2647 . 2 (𝜑 → (𝐶 · (𝐶C𝑐𝐾)) = ((𝐶 · (𝐶 FallFac 𝐾)) / (!‘𝐾)))
226, 9, 17, 19divassd 10715 . . . 4 (𝜑 → (((𝐶𝐾) · (𝐶 FallFac 𝐾)) / (!‘𝐾)) = ((𝐶𝐾) · ((𝐶 FallFac 𝐾) / (!‘𝐾))))
2322oveq1d 6564 . . 3 (𝜑 → ((((𝐶𝐾) · (𝐶 FallFac 𝐾)) / (!‘𝐾)) + ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾))) = (((𝐶𝐾) · ((𝐶 FallFac 𝐾) / (!‘𝐾))) + ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾))))
246, 9mulcld 9939 . . . 4 (𝜑 → ((𝐶𝐾) · (𝐶 FallFac 𝐾)) ∈ ℂ)
253, 9mulcld 9939 . . . 4 (𝜑 → (𝐾 · (𝐶 FallFac 𝐾)) ∈ ℂ)
2624, 25, 17, 19divdird 10718 . . 3 (𝜑 → ((((𝐶𝐾) · (𝐶 FallFac 𝐾)) + (𝐾 · (𝐶 FallFac 𝐾))) / (!‘𝐾)) = ((((𝐶𝐾) · (𝐶 FallFac 𝐾)) / (!‘𝐾)) + ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾))))
2713oveq2d 6565 . . . 4 (𝜑 → ((𝐶𝐾) · (𝐶C𝑐𝐾)) = ((𝐶𝐾) · ((𝐶 FallFac 𝐾) / (!‘𝐾))))
28 nnm1nn0 11211 . . . . . . . 8 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
292, 28syl 17 . . . . . . 7 (𝜑 → (𝐾 − 1) ∈ ℕ0)
30 faccl 12932 . . . . . . . 8 ((𝐾 − 1) ∈ ℕ0 → (!‘(𝐾 − 1)) ∈ ℕ)
3130nncnd 10913 . . . . . . 7 ((𝐾 − 1) ∈ ℕ0 → (!‘(𝐾 − 1)) ∈ ℂ)
3229, 31syl 17 . . . . . 6 (𝜑 → (!‘(𝐾 − 1)) ∈ ℂ)
33 facne0 12935 . . . . . . 7 ((𝐾 − 1) ∈ ℕ0 → (!‘(𝐾 − 1)) ≠ 0)
3429, 33syl 17 . . . . . 6 (𝜑 → (!‘(𝐾 − 1)) ≠ 0)
352nnne0d 10942 . . . . . 6 (𝜑𝐾 ≠ 0)
369, 32, 3, 34, 35divcan5d 10706 . . . . 5 (𝜑 → ((𝐾 · (𝐶 FallFac 𝐾)) / (𝐾 · (!‘(𝐾 − 1)))) = ((𝐶 FallFac 𝐾) / (!‘(𝐾 − 1))))
37 1cnd 9935 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
383, 37npcand 10275 . . . . . . . 8 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
3938fveq2d 6107 . . . . . . 7 (𝜑 → (!‘((𝐾 − 1) + 1)) = (!‘𝐾))
4038oveq2d 6565 . . . . . . . 8 (𝜑 → ((!‘(𝐾 − 1)) · ((𝐾 − 1) + 1)) = ((!‘(𝐾 − 1)) · 𝐾))
41 facp1 12927 . . . . . . . . 9 ((𝐾 − 1) ∈ ℕ0 → (!‘((𝐾 − 1) + 1)) = ((!‘(𝐾 − 1)) · ((𝐾 − 1) + 1)))
4229, 41syl 17 . . . . . . . 8 (𝜑 → (!‘((𝐾 − 1) + 1)) = ((!‘(𝐾 − 1)) · ((𝐾 − 1) + 1)))
433, 32mulcomd 9940 . . . . . . . 8 (𝜑 → (𝐾 · (!‘(𝐾 − 1))) = ((!‘(𝐾 − 1)) · 𝐾))
4440, 42, 433eqtr4d 2654 . . . . . . 7 (𝜑 → (!‘((𝐾 − 1) + 1)) = (𝐾 · (!‘(𝐾 − 1))))
4539, 44eqtr3d 2646 . . . . . 6 (𝜑 → (!‘𝐾) = (𝐾 · (!‘(𝐾 − 1))))
4645oveq2d 6565 . . . . 5 (𝜑 → ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾)) = ((𝐾 · (𝐶 FallFac 𝐾)) / (𝐾 · (!‘(𝐾 − 1)))))
473, 37subcld 10271 . . . . . . . 8 (𝜑 → (𝐾 − 1) ∈ ℂ)
481, 47subcld 10271 . . . . . . 7 (𝜑 → (𝐶 − (𝐾 − 1)) ∈ ℂ)
49 fallfaccl 14586 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐶 FallFac (𝐾 − 1)) ∈ ℂ)
501, 29, 49syl2anc 691 . . . . . . 7 (𝜑 → (𝐶 FallFac (𝐾 − 1)) ∈ ℂ)
5148, 50, 32, 34divassd 10715 . . . . . 6 (𝜑 → (((𝐶 − (𝐾 − 1)) · (𝐶 FallFac (𝐾 − 1))) / (!‘(𝐾 − 1))) = ((𝐶 − (𝐾 − 1)) · ((𝐶 FallFac (𝐾 − 1)) / (!‘(𝐾 − 1)))))
5238oveq2d 6565 . . . . . . . . 9 (𝜑 → (𝐶 FallFac ((𝐾 − 1) + 1)) = (𝐶 FallFac 𝐾))
53 fallfacp1 14600 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ (𝐾 − 1) ∈ ℕ0) → (𝐶 FallFac ((𝐾 − 1) + 1)) = ((𝐶 FallFac (𝐾 − 1)) · (𝐶 − (𝐾 − 1))))
541, 29, 53syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐶 FallFac ((𝐾 − 1) + 1)) = ((𝐶 FallFac (𝐾 − 1)) · (𝐶 − (𝐾 − 1))))
5552, 54eqtr3d 2646 . . . . . . . 8 (𝜑 → (𝐶 FallFac 𝐾) = ((𝐶 FallFac (𝐾 − 1)) · (𝐶 − (𝐾 − 1))))
5648, 50mulcomd 9940 . . . . . . . 8 (𝜑 → ((𝐶 − (𝐾 − 1)) · (𝐶 FallFac (𝐾 − 1))) = ((𝐶 FallFac (𝐾 − 1)) · (𝐶 − (𝐾 − 1))))
5755, 56eqtr4d 2647 . . . . . . 7 (𝜑 → (𝐶 FallFac 𝐾) = ((𝐶 − (𝐾 − 1)) · (𝐶 FallFac (𝐾 − 1))))
5857oveq1d 6564 . . . . . 6 (𝜑 → ((𝐶 FallFac 𝐾) / (!‘(𝐾 − 1))) = (((𝐶 − (𝐾 − 1)) · (𝐶 FallFac (𝐾 − 1))) / (!‘(𝐾 − 1))))
591, 29bccval 37559 . . . . . . 7 (𝜑 → (𝐶C𝑐(𝐾 − 1)) = ((𝐶 FallFac (𝐾 − 1)) / (!‘(𝐾 − 1))))
6059oveq2d 6565 . . . . . 6 (𝜑 → ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1))) = ((𝐶 − (𝐾 − 1)) · ((𝐶 FallFac (𝐾 − 1)) / (!‘(𝐾 − 1)))))
6151, 58, 603eqtr4rd 2655 . . . . 5 (𝜑 → ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1))) = ((𝐶 FallFac 𝐾) / (!‘(𝐾 − 1))))
6236, 46, 613eqtr4rd 2655 . . . 4 (𝜑 → ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1))) = ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾)))
6327, 62oveq12d 6567 . . 3 (𝜑 → (((𝐶𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = (((𝐶𝐾) · ((𝐶 FallFac 𝐾) / (!‘𝐾))) + ((𝐾 · (𝐶 FallFac 𝐾)) / (!‘𝐾))))
6423, 26, 633eqtr4rd 2655 . 2 (𝜑 → (((𝐶𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = ((((𝐶𝐾) · (𝐶 FallFac 𝐾)) + (𝐾 · (𝐶 FallFac 𝐾))) / (!‘𝐾)))
6512, 21, 643eqtr4rd 2655 1 (𝜑 → (((𝐶𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = (𝐶 · (𝐶C𝑐𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wne 2780  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145   / cdiv 10563  cn 10897  0cn0 11169  !cfa 12922   FallFac cfallfac 14574  C𝑐cbcc 37557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-fac 12923  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475  df-fallfac 14577  df-bcc 37558
This theorem is referenced by:  binomcxplemnotnn0  37577
  Copyright terms: Public domain W3C validator