Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bijust | Structured version Visualization version GIF version |
Description: Theorem used to justify definition of biconditional df-bi 196. (Contributed by NM, 11-May-1999.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
Ref | Expression |
---|---|
bijust | ⊢ ¬ ((¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) | |
2 | pm2.01 179 | . 2 ⊢ (((¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
3 | 1, 2 | mt2 190 | 1 ⊢ ¬ ((¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |