Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbtbndlem3 Structured version   Visualization version   GIF version

Theorem bgoldbtbndlem3 40223
Description: Lemma 3 for bgoldbtbnd 40225. (Contributed by AV, 1-Aug-2020.)
Hypotheses
Ref Expression
bgoldbtbnd.m (𝜑𝑀 ∈ (ℤ11))
bgoldbtbnd.n (𝜑𝑁 ∈ (ℤ11))
bgoldbtbnd.b (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven ))
bgoldbtbnd.d (𝜑𝐷 ∈ (ℤ‘3))
bgoldbtbnd.f (𝜑𝐹 ∈ (RePart‘𝐷))
bgoldbtbnd.i (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
bgoldbtbnd.0 (𝜑 → (𝐹‘0) = 7)
bgoldbtbnd.1 (𝜑 → (𝐹‘1) = 13)
bgoldbtbnd.l (𝜑𝑀 < (𝐹𝐷))
bgoldbtbnd.r (𝜑 → (𝐹𝐷) ∈ ℝ)
bgoldbtbndlem3.s 𝑆 = (𝑋 − (𝐹𝐼))
Assertion
Ref Expression
bgoldbtbndlem3 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑁
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝐷(𝑛)   𝑆(𝑖,𝑛)   𝐹(𝑛)   𝐼(𝑛)   𝑀(𝑖,𝑛)   𝑁(𝑛)   𝑋(𝑖,𝑛)

Proof of Theorem bgoldbtbndlem3
StepHypRef Expression
1 fzo0ss1 12367 . . . . . 6 (1..^𝐷) ⊆ (0..^𝐷)
21sseli 3564 . . . . 5 (𝐼 ∈ (1..^𝐷) → 𝐼 ∈ (0..^𝐷))
3 bgoldbtbnd.i . . . . 5 (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))))
4 fveq2 6103 . . . . . . . 8 (𝑖 = 𝐼 → (𝐹𝑖) = (𝐹𝐼))
54eleq1d 2672 . . . . . . 7 (𝑖 = 𝐼 → ((𝐹𝑖) ∈ (ℙ ∖ {2}) ↔ (𝐹𝐼) ∈ (ℙ ∖ {2})))
6 oveq1 6556 . . . . . . . . . 10 (𝑖 = 𝐼 → (𝑖 + 1) = (𝐼 + 1))
76fveq2d 6107 . . . . . . . . 9 (𝑖 = 𝐼 → (𝐹‘(𝑖 + 1)) = (𝐹‘(𝐼 + 1)))
87, 4oveq12d 6567 . . . . . . . 8 (𝑖 = 𝐼 → ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) = ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))
98breq1d 4593 . . . . . . 7 (𝑖 = 𝐼 → (((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ↔ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)))
108breq2d 4595 . . . . . . 7 (𝑖 = 𝐼 → (4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) ↔ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))
115, 9, 103anbi123d 1391 . . . . . 6 (𝑖 = 𝐼 → (((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) ↔ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
1211rspcv 3278 . . . . 5 (𝐼 ∈ (0..^𝐷) → (∀𝑖 ∈ (0..^𝐷)((𝐹𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹𝑖))) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
132, 3, 12syl2imc 40 . . . 4 (𝜑 → (𝐼 ∈ (1..^𝐷) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))))
1413a1d 25 . . 3 (𝜑 → (𝑋 ∈ Odd → (𝐼 ∈ (1..^𝐷) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))))
15143imp 1249 . 2 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))))
16 bgoldbtbndlem3.s . . . . 5 𝑆 = (𝑋 − (𝐹𝐼))
17 simp2 1055 . . . . . . . 8 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → 𝑋 ∈ Odd )
18 oddprmALTV 40136 . . . . . . . . 9 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ Odd )
19183ad2ant1 1075 . . . . . . . 8 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))) → (𝐹𝐼) ∈ Odd )
2017, 19anim12i 588 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) → (𝑋 ∈ Odd ∧ (𝐹𝐼) ∈ Odd ))
2120adantr 480 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑋 ∈ Odd ∧ (𝐹𝐼) ∈ Odd ))
22 omoeALTV 40134 . . . . . 6 ((𝑋 ∈ Odd ∧ (𝐹𝐼) ∈ Odd ) → (𝑋 − (𝐹𝐼)) ∈ Even )
2321, 22syl 17 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑋 − (𝐹𝐼)) ∈ Even )
2416, 23syl5eqel 2692 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → 𝑆 ∈ Even )
25 eldifi 3694 . . . . . . . . . . 11 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (𝐹𝐼) ∈ ℙ)
26 prmz 15227 . . . . . . . . . . . 12 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℤ)
2726zred 11358 . . . . . . . . . . 11 ((𝐹𝐼) ∈ ℙ → (𝐹𝐼) ∈ ℝ)
28 fzofzp1 12431 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (1..^𝐷) → (𝐼 + 1) ∈ (1...𝐷))
29 elfzo2 12342 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (1..^𝐷) ↔ (𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷))
30 1zzd 11285 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 1 ∈ ℤ)
31 simp2 1055 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 𝐷 ∈ ℤ)
32 eluz2 11569 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼))
33 zre 11258 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (1 ∈ ℤ → 1 ∈ ℝ)
34 zre 11258 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
35 zre 11258 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐷 ∈ ℤ → 𝐷 ∈ ℝ)
36 leltletr 39940 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((1 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((1 ≤ 𝐼𝐼 < 𝐷) → 1 ≤ 𝐷))
3733, 34, 35, 36syl3an 1360 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((1 ≤ 𝐼𝐼 < 𝐷) → 1 ≤ 𝐷))
3837exp5o 1278 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 ∈ ℤ → (𝐼 ∈ ℤ → (𝐷 ∈ ℤ → (1 ≤ 𝐼 → (𝐼 < 𝐷 → 1 ≤ 𝐷)))))
3938com34 89 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ ℤ → (𝐼 ∈ ℤ → (1 ≤ 𝐼 → (𝐷 ∈ ℤ → (𝐼 < 𝐷 → 1 ≤ 𝐷)))))
40393imp 1249 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 1 ≤ 𝐼) → (𝐷 ∈ ℤ → (𝐼 < 𝐷 → 1 ≤ 𝐷)))
4132, 40sylbi 206 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐼 ∈ (ℤ‘1) → (𝐷 ∈ ℤ → (𝐼 < 𝐷 → 1 ≤ 𝐷)))
42413imp 1249 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 1 ≤ 𝐷)
43 eluz2 11569 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 1 ≤ 𝐷))
4430, 31, 42, 43syl3anbrc 1239 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ (ℤ‘1) ∧ 𝐷 ∈ ℤ ∧ 𝐼 < 𝐷) → 𝐷 ∈ (ℤ‘1))
4529, 44sylbi 206 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^𝐷) → 𝐷 ∈ (ℤ‘1))
46 fzisfzounsn 12445 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (ℤ‘1) → (1...𝐷) = ((1..^𝐷) ∪ {𝐷}))
4745, 46syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (1..^𝐷) → (1...𝐷) = ((1..^𝐷) ∪ {𝐷}))
4847eleq2d 2673 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1...𝐷) ↔ (𝐼 + 1) ∈ ((1..^𝐷) ∪ {𝐷})))
49 elun 3715 . . . . . . . . . . . . . . . . . 18 ((𝐼 + 1) ∈ ((1..^𝐷) ∪ {𝐷}) ↔ ((𝐼 + 1) ∈ (1..^𝐷) ∨ (𝐼 + 1) ∈ {𝐷}))
5048, 49syl6bb 275 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1...𝐷) ↔ ((𝐼 + 1) ∈ (1..^𝐷) ∨ (𝐼 + 1) ∈ {𝐷})))
51 bgoldbtbnd.d . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐷 ∈ (ℤ‘3))
52 eluzge3nn 11606 . . . . . . . . . . . . . . . . . . . . . 22 (𝐷 ∈ (ℤ‘3) → 𝐷 ∈ ℕ)
5351, 52syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐷 ∈ ℕ)
5453ad2antrl 760 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → 𝐷 ∈ ℕ)
55 bgoldbtbnd.f . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 ∈ (RePart‘𝐷))
5655ad2antrl 760 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → 𝐹 ∈ (RePart‘𝐷))
57 simplr 788 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → (𝐼 + 1) ∈ (1..^𝐷))
5854, 56, 57iccpartipre 39959 . . . . . . . . . . . . . . . . . . 19 (((𝐼 ∈ (1..^𝐷) ∧ (𝐼 + 1) ∈ (1..^𝐷)) ∧ (𝜑𝑋 ∈ Odd )) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
5958exp31 628 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1..^𝐷) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
60 elsni 4142 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 + 1) ∈ {𝐷} → (𝐼 + 1) = 𝐷)
61 bgoldbtbnd.r . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹𝐷) ∈ ℝ)
6261ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼 + 1) = 𝐷 ∧ (𝜑𝑋 ∈ Odd )) → (𝐹𝐷) ∈ ℝ)
63 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐼 + 1) = 𝐷 → (𝐹‘(𝐼 + 1)) = (𝐹𝐷))
6463eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐼 + 1) = 𝐷 → ((𝐹‘(𝐼 + 1)) ∈ ℝ ↔ (𝐹𝐷) ∈ ℝ))
6564adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐼 + 1) = 𝐷 ∧ (𝜑𝑋 ∈ Odd )) → ((𝐹‘(𝐼 + 1)) ∈ ℝ ↔ (𝐹𝐷) ∈ ℝ))
6662, 65mpbird 246 . . . . . . . . . . . . . . . . . . . . 21 (((𝐼 + 1) = 𝐷 ∧ (𝜑𝑋 ∈ Odd )) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
6766ex 449 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 + 1) = 𝐷 → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
6860, 67syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐼 + 1) ∈ {𝐷} → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
6968a1i 11 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ {𝐷} → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
7059, 69jaod 394 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ (1..^𝐷) → (((𝐼 + 1) ∈ (1..^𝐷) ∨ (𝐼 + 1) ∈ {𝐷}) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
7150, 70sylbid 229 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (1..^𝐷) → ((𝐼 + 1) ∈ (1...𝐷) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
7228, 71mpd 15 . . . . . . . . . . . . . . 15 (𝐼 ∈ (1..^𝐷) → ((𝜑𝑋 ∈ Odd ) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
7372com12 32 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ Odd ) → (𝐼 ∈ (1..^𝐷) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
74733impia 1253 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
75 bgoldbtbnd.n . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ (ℤ11))
76 eluzelre 11574 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ11) → 𝑁 ∈ ℝ)
7775, 76syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ)
78 oddz 40082 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Odd → 𝑋 ∈ ℤ)
7978zred 11358 . . . . . . . . . . . . . . 15 (𝑋 ∈ Odd → 𝑋 ∈ ℝ)
80 rexr 9964 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹‘(𝐼 + 1)) ∈ ℝ → (𝐹‘(𝐼 + 1)) ∈ ℝ*)
81 rexr 9964 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝐼) ∈ ℝ → (𝐹𝐼) ∈ ℝ*)
8280, 81anim12ci 589 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
8382adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → ((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*))
84 elico1 12089 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝐼) ∈ ℝ* ∧ (𝐹‘(𝐼 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
8583, 84syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1)))))
86 simpllr 795 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 𝑋 ∈ ℝ)
87 simplrl 796 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝐹‘(𝐼 + 1)) ∈ ℝ)
88 simplrr 797 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝐹𝐼) ∈ ℝ)
89 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 𝑋 < (𝐹‘(𝐼 + 1)))
9086, 87, 88, 89ltsub1dd 10518 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))
91 simplr 788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → 𝑋 ∈ ℝ)
92 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝐹𝐼) ∈ ℝ)
9391, 92resubcld 10337 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 − (𝐹𝐼)) ∈ ℝ)
9493adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) ∈ ℝ)
9587, 88resubcld 10337 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∈ ℝ)
96 simplll 794 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 𝑁 ∈ ℝ)
97 4re 10974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 ∈ ℝ
9897a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → 4 ∈ ℝ)
9996, 98resubcld 10337 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (𝑁 − 4) ∈ ℝ)
100 lttr 9993 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑋 − (𝐹𝐼)) ∈ ℝ ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∈ ℝ ∧ (𝑁 − 4) ∈ ℝ) → (((𝑋 − (𝐹𝐼)) < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4)))
10194, 95, 99, 100syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (((𝑋 − (𝐹𝐼)) < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4)))
10290, 101mpand 707 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ 𝑋 < (𝐹‘(𝐼 + 1))) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4)))
103102impr 647 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (𝑋 − (𝐹𝐼)) < (𝑁 − 4))
104 4pos 10993 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 < 4
10597a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → 4 ∈ ℝ)
106 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → 𝑁 ∈ ℝ)
107105, 106ltsubposd 10492 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 < 4 ↔ (𝑁 − 4) < 𝑁))
108104, 107mpbii 222 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (𝑁 − 4) < 𝑁)
109108adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑁 − 4) < 𝑁)
110109adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (𝑁 − 4) < 𝑁)
111 simpll 786 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → 𝑁 ∈ ℝ)
11297a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → 4 ∈ ℝ)
113111, 112resubcld 10337 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑁 − 4) ∈ ℝ)
114 lttr 9993 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑋 − (𝐹𝐼)) ∈ ℝ ∧ (𝑁 − 4) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑋 − (𝐹𝐼)) < (𝑁 − 4) ∧ (𝑁 − 4) < 𝑁) → (𝑋 − (𝐹𝐼)) < 𝑁))
11593, 113, 111, 114syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝑋 − (𝐹𝐼)) < (𝑁 − 4) ∧ (𝑁 − 4) < 𝑁) → (𝑋 − (𝐹𝐼)) < 𝑁))
116115adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (((𝑋 − (𝐹𝐼)) < (𝑁 − 4) ∧ (𝑁 − 4) < 𝑁) → (𝑋 − (𝐹𝐼)) < 𝑁))
117103, 110, 116mp2and 711 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) ∧ (𝑋 < (𝐹‘(𝐼 + 1)) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4))) → (𝑋 − (𝐹𝐼)) < 𝑁)
118117exp32 629 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 < (𝐹‘(𝐼 + 1)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
119118com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 < (𝐹‘(𝐼 + 1)) → (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
1201193ad2ant3 1077 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1))) → (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
121120com12 32 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → ((𝑋 ∈ ℝ* ∧ (𝐹𝐼) ≤ 𝑋𝑋 < (𝐹‘(𝐼 + 1))) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
12285, 121sylbid 229 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 − (𝐹𝐼)) < 𝑁)))
123122com23 84 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ ((𝐹‘(𝐼 + 1)) ∈ ℝ ∧ (𝐹𝐼) ∈ ℝ)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))
124123exp32 629 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → ((𝐹𝐼) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
125124com34 89 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
12677, 79, 125syl2an 493 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ Odd ) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
1271263adant3 1074 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝐹‘(𝐼 + 1)) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))))
12874, 127mpd 15 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝐹𝐼) ∈ ℝ → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))))
129128com13 86 . . . . . . . . . . 11 ((𝐹𝐼) ∈ ℝ → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))))
13025, 27, 1293syl 18 . . . . . . . . . 10 ((𝐹𝐼) ∈ (ℙ ∖ {2}) → (((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))))
131130imp 444 . . . . . . . . 9 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4)) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))
1321313adant3 1074 . . . . . . . 8 (((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼))) → ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁)))
133132impcom 445 . . . . . . 7 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) → (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) → (𝑋 − (𝐹𝐼)) < 𝑁))
134133imp 444 . . . . . 6 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ 𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1)))) → (𝑋 − (𝐹𝐼)) < 𝑁)
135134adantrr 749 . . . . 5 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑋 − (𝐹𝐼)) < 𝑁)
13616, 135syl5eqbr 4618 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → 𝑆 < 𝑁)
137 simprr 792 . . . 4 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → 4 < 𝑆)
13824, 136, 1373jca 1235 . . 3 ((((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) ∧ (𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆)) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))
139138ex 449 . 2 (((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) ∧ ((𝐹𝐼) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝐼 + 1)) − (𝐹𝐼)))) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
14015, 139mpdan 699 1 ((𝜑𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  cdif 3537  cun 3538  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  *cxr 9952   < clt 9953  cle 9954  cmin 10145  cn 10897  2c2 10947  3c3 10948  4c4 10949  7c7 10952  cz 11254  cdc 11369  cuz 11563  [,)cico 12048  ...cfz 12197  ..^cfzo 12334  cprime 15223  RePartciccp 39951   Even ceven 40075   Odd codd 40076   GoldbachEven cgbe 40167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-prm 15224  df-iccp 39952  df-even 40077  df-odd 40078
This theorem is referenced by:  bgoldbtbnd  40225
  Copyright terms: Public domain W3C validator