Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbachlt Structured version   Visualization version   GIF version

Theorem bgoldbachlt 40227
Description: The binary Goldbach conjecture is valid for small even numbers (i.e. for all even numbers less than or equal to a fixed big 𝑚). This is verified for m = 4 x 10^18 by Oliveira e Silva, see ax-bgbltosilva 40226. (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
bgoldbachlt 𝑚 ∈ ℕ ((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem bgoldbachlt
StepHypRef Expression
1 4nn 11064 . . 3 4 ∈ ℕ
2 10nn 11390 . . . 4 10 ∈ ℕ
3 1nn0 11185 . . . . 5 1 ∈ ℕ0
4 8nn0 11192 . . . . 5 8 ∈ ℕ0
53, 4deccl 11388 . . . 4 18 ∈ ℕ0
6 nnexpcl 12735 . . . 4 ((10 ∈ ℕ ∧ 18 ∈ ℕ0) → (10↑18) ∈ ℕ)
72, 5, 6mp2an 704 . . 3 (10↑18) ∈ ℕ
81, 7nnmulcli 10921 . 2 (4 · (10↑18)) ∈ ℕ
9 id 22 . . 3 ((4 · (10↑18)) ∈ ℕ → (4 · (10↑18)) ∈ ℕ)
10 breq2 4587 . . . . 5 (𝑚 = (4 · (10↑18)) → ((4 · (10↑18)) ≤ 𝑚 ↔ (4 · (10↑18)) ≤ (4 · (10↑18))))
11 breq2 4587 . . . . . . . 8 (𝑚 = (4 · (10↑18)) → (𝑛 < 𝑚𝑛 < (4 · (10↑18))))
1211anbi2d 736 . . . . . . 7 (𝑚 = (4 · (10↑18)) → ((4 < 𝑛𝑛 < 𝑚) ↔ (4 < 𝑛𝑛 < (4 · (10↑18)))))
1312imbi1d 330 . . . . . 6 (𝑚 = (4 · (10↑18)) → (((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ) ↔ ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )))
1413ralbidv 2969 . . . . 5 (𝑚 = (4 · (10↑18)) → (∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )))
1510, 14anbi12d 743 . . . 4 (𝑚 = (4 · (10↑18)) → (((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )) ↔ ((4 · (10↑18)) ≤ (4 · (10↑18)) ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))))
1615adantl 481 . . 3 (((4 · (10↑18)) ∈ ℕ ∧ 𝑚 = (4 · (10↑18))) → (((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )) ↔ ((4 · (10↑18)) ≤ (4 · (10↑18)) ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))))
17 nnre 10904 . . . . 5 ((4 · (10↑18)) ∈ ℕ → (4 · (10↑18)) ∈ ℝ)
1817leidd 10473 . . . 4 ((4 · (10↑18)) ∈ ℕ → (4 · (10↑18)) ≤ (4 · (10↑18)))
19 simplr 788 . . . . . . 7 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ∈ Even )
20 simprl 790 . . . . . . 7 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 4 < 𝑛)
21 evenz 40081 . . . . . . . . . . 11 (𝑛 ∈ Even → 𝑛 ∈ ℤ)
2221zred 11358 . . . . . . . . . 10 (𝑛 ∈ Even → 𝑛 ∈ ℝ)
23 ltle 10005 . . . . . . . . . 10 ((𝑛 ∈ ℝ ∧ (4 · (10↑18)) ∈ ℝ) → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18))))
2422, 17, 23syl2anr 494 . . . . . . . . 9 (((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18))))
2524a1d 25 . . . . . . . 8 (((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) → (4 < 𝑛 → (𝑛 < (4 · (10↑18)) → 𝑛 ≤ (4 · (10↑18)))))
2625imp32 448 . . . . . . 7 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ≤ (4 · (10↑18)))
27 ax-bgbltosilva 40226 . . . . . . 7 ((𝑛 ∈ Even ∧ 4 < 𝑛𝑛 ≤ (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )
2819, 20, 26, 27syl3anc 1318 . . . . . 6 ((((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ (4 < 𝑛𝑛 < (4 · (10↑18)))) → 𝑛 ∈ GoldbachEven )
2928ex 449 . . . . 5 (((4 · (10↑18)) ∈ ℕ ∧ 𝑛 ∈ Even ) → ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))
3029ralrimiva 2949 . . . 4 ((4 · (10↑18)) ∈ ℕ → ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven ))
3118, 30jca 553 . . 3 ((4 · (10↑18)) ∈ ℕ → ((4 · (10↑18)) ≤ (4 · (10↑18)) ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < (4 · (10↑18))) → 𝑛 ∈ GoldbachEven )))
329, 16, 31rspcedvd 3289 . 2 ((4 · (10↑18)) ∈ ℕ → ∃𝑚 ∈ ℕ ((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )))
338, 32ax-mp 5 1 𝑚 ∈ ℕ ((4 · (10↑18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954  cn 10897  4c4 10949  8c8 10953  0cn0 11169  cdc 11369  cexp 12722   Even ceven 40075   GoldbachEven cgbe 40167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-bgbltosilva 40226
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-seq 12664  df-exp 12723  df-even 40077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator