MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1ctr Structured version   Visualization version   GIF version

Theorem bcp1ctr 24804
Description: Ratio of two central binomial coefficients. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcp1ctr (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))))

Proof of Theorem bcp1ctr
StepHypRef Expression
1 2t1e2 11053 . . . . . . 7 (2 · 1) = 2
2 df-2 10956 . . . . . . 7 2 = (1 + 1)
31, 2eqtri 2632 . . . . . 6 (2 · 1) = (1 + 1)
43oveq2i 6560 . . . . 5 ((2 · 𝑁) + (2 · 1)) = ((2 · 𝑁) + (1 + 1))
5 nn0cn 11179 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
6 2cn 10968 . . . . . . 7 2 ∈ ℂ
7 ax-1cn 9873 . . . . . . 7 1 ∈ ℂ
8 adddi 9904 . . . . . . 7 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
96, 7, 8mp3an13 1407 . . . . . 6 (𝑁 ∈ ℂ → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
105, 9syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (2 · (𝑁 + 1)) = ((2 · 𝑁) + (2 · 1)))
11 2nn0 11186 . . . . . . . 8 2 ∈ ℕ0
12 nn0mulcl 11206 . . . . . . . 8 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 · 𝑁) ∈ ℕ0)
1311, 12mpan 702 . . . . . . 7 (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℕ0)
1413nn0cnd 11230 . . . . . 6 (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℂ)
15 addass 9902 . . . . . . 7 (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
167, 7, 15mp3an23 1408 . . . . . 6 ((2 · 𝑁) ∈ ℂ → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
1714, 16syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
184, 10, 173eqtr4a 2670 . . . 4 (𝑁 ∈ ℕ0 → (2 · (𝑁 + 1)) = (((2 · 𝑁) + 1) + 1))
1918oveq1d 6564 . . 3 (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = ((((2 · 𝑁) + 1) + 1)C(𝑁 + 1)))
20 peano2nn0 11210 . . . . 5 ((2 · 𝑁) ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ0)
2113, 20syl 17 . . . 4 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ0)
22 nn0p1nn 11209 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
2322nnzd 11357 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
24 bcpasc 12970 . . . 4 ((((2 · 𝑁) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = ((((2 · 𝑁) + 1) + 1)C(𝑁 + 1)))
2521, 23, 24syl2anc 691 . . 3 (𝑁 ∈ ℕ0 → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = ((((2 · 𝑁) + 1) + 1)C(𝑁 + 1)))
2619, 25eqtr4d 2647 . 2 (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))))
27 nn0z 11277 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
28 bccl 12971 . . . . . . 7 (((2 · 𝑁) ∈ ℕ0𝑁 ∈ ℤ) → ((2 · 𝑁)C𝑁) ∈ ℕ0)
2913, 27, 28syl2anc 691 . . . . . 6 (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) ∈ ℕ0)
3029nn0cnd 11230 . . . . 5 (𝑁 ∈ ℕ0 → ((2 · 𝑁)C𝑁) ∈ ℂ)
31 2cnd 10970 . . . . 5 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
3221nn0red 11229 . . . . . . 7 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℝ)
3332, 22nndivred 10946 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) / (𝑁 + 1)) ∈ ℝ)
3433recnd 9947 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) / (𝑁 + 1)) ∈ ℂ)
3530, 31, 34mul12d 10124 . . . 4 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = (2 · (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1)))))
36 1cnd 9935 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
3714, 36, 5addsubd 10292 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) − 𝑁) = (((2 · 𝑁) − 𝑁) + 1))
3852timesd 11152 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁))
3938oveq1d 6564 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ((2 · 𝑁) − 𝑁) = ((𝑁 + 𝑁) − 𝑁))
405, 5pncand 10272 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ((𝑁 + 𝑁) − 𝑁) = 𝑁)
4139, 40eqtrd 2644 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((2 · 𝑁) − 𝑁) = 𝑁)
4241oveq1d 6564 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (((2 · 𝑁) − 𝑁) + 1) = (𝑁 + 1))
4337, 42eqtr2d 2645 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) = (((2 · 𝑁) + 1) − 𝑁))
4443oveq2d 6565 . . . . . . 7 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) / (𝑁 + 1)) = (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁)))
4544oveq2d 6565 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1))) = (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁))))
46 fzctr 12320 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
47 bcp1n 12965 . . . . . . 7 (𝑁 ∈ (0...(2 · 𝑁)) → (((2 · 𝑁) + 1)C𝑁) = (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁))))
4846, 47syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C𝑁) = (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (((2 · 𝑁) + 1) − 𝑁))))
4945, 48eqtr4d 2647 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1))) = (((2 · 𝑁) + 1)C𝑁))
5049oveq2d 6565 . . . 4 (𝑁 ∈ ℕ0 → (2 · (((2 · 𝑁)C𝑁) · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = (2 · (((2 · 𝑁) + 1)C𝑁)))
5135, 50eqtrd 2644 . . 3 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = (2 · (((2 · 𝑁) + 1)C𝑁)))
52 bccmpl 12958 . . . . . . 7 ((((2 · 𝑁) + 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ) → (((2 · 𝑁) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 1)C(((2 · 𝑁) + 1) − (𝑁 + 1))))
5321, 23, 52syl2anc 691 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 1)C(((2 · 𝑁) + 1) − (𝑁 + 1))))
5438oveq1d 6564 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) = ((𝑁 + 𝑁) + 1))
555, 5, 36addassd 9941 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((𝑁 + 𝑁) + 1) = (𝑁 + (𝑁 + 1)))
5654, 55eqtrd 2644 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((2 · 𝑁) + 1) = (𝑁 + (𝑁 + 1)))
5756oveq1d 6564 . . . . . . . 8 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) − (𝑁 + 1)) = ((𝑁 + (𝑁 + 1)) − (𝑁 + 1)))
5822nncnd 10913 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
595, 58pncand 10272 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 + (𝑁 + 1)) − (𝑁 + 1)) = 𝑁)
6057, 59eqtrd 2644 . . . . . . 7 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1) − (𝑁 + 1)) = 𝑁)
6160oveq2d 6565 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C(((2 · 𝑁) + 1) − (𝑁 + 1))) = (((2 · 𝑁) + 1)C𝑁))
6253, 61eqtrd 2644 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C(𝑁 + 1)) = (((2 · 𝑁) + 1)C𝑁))
63 pncan 10166 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
645, 7, 63sylancl 693 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
6564oveq2d 6565 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C((𝑁 + 1) − 1)) = (((2 · 𝑁) + 1)C𝑁))
6662, 65oveq12d 6567 . . . 4 (𝑁 ∈ ℕ0 → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = ((((2 · 𝑁) + 1)C𝑁) + (((2 · 𝑁) + 1)C𝑁)))
67 bccl 12971 . . . . . . 7 ((((2 · 𝑁) + 1) ∈ ℕ0𝑁 ∈ ℤ) → (((2 · 𝑁) + 1)C𝑁) ∈ ℕ0)
6821, 27, 67syl2anc 691 . . . . . 6 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C𝑁) ∈ ℕ0)
6968nn0cnd 11230 . . . . 5 (𝑁 ∈ ℕ0 → (((2 · 𝑁) + 1)C𝑁) ∈ ℂ)
70692timesd 11152 . . . 4 (𝑁 ∈ ℕ0 → (2 · (((2 · 𝑁) + 1)C𝑁)) = ((((2 · 𝑁) + 1)C𝑁) + (((2 · 𝑁) + 1)C𝑁)))
7166, 70eqtr4d 2647 . . 3 (𝑁 ∈ ℕ0 → ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))) = (2 · (((2 · 𝑁) + 1)C𝑁)))
7251, 71eqtr4d 2647 . 2 (𝑁 ∈ ℕ0 → (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))) = ((((2 · 𝑁) + 1)C(𝑁 + 1)) + (((2 · 𝑁) + 1)C((𝑁 + 1) − 1))))
7326, 72eqtr4d 2647 1 (𝑁 ∈ ℕ0 → ((2 · (𝑁 + 1))C(𝑁 + 1)) = (((2 · 𝑁)C𝑁) · (2 · (((2 · 𝑁) + 1) / (𝑁 + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145   / cdiv 10563  2c2 10947  0cn0 11169  cz 11254  ...cfz 12197  Ccbc 12951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-fac 12923  df-bc 12952
This theorem is referenced by:  bclbnd  24805
  Copyright terms: Public domain W3C validator