MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcmax Structured version   Visualization version   GIF version

Theorem bcmax 24803
Description: The binomial coefficient takes its maximum value at the center. (Contributed by Mario Carneiro, 5-Mar-2014.)
Assertion
Ref Expression
bcmax ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))

Proof of Theorem bcmax
StepHypRef Expression
1 2nn0 11186 . . . 4 2 ∈ ℕ0
2 simpll 786 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ ℕ0)
3 nn0mulcl 11206 . . . 4 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 · 𝑁) ∈ ℕ0)
41, 2, 3sylancr 694 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → (2 · 𝑁) ∈ ℕ0)
5 simpr 476 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ𝐾))
6 nn0re 11178 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
76leidd 10473 . . . . 5 (𝑁 ∈ ℕ0𝑁𝑁)
8 nn0cn 11179 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
9 2cn 10968 . . . . . . 7 2 ∈ ℂ
10 2ne0 10990 . . . . . . 7 2 ≠ 0
11 divcan3 10590 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑁) / 2) = 𝑁)
129, 10, 11mp3an23 1408 . . . . . 6 (𝑁 ∈ ℂ → ((2 · 𝑁) / 2) = 𝑁)
138, 12syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ((2 · 𝑁) / 2) = 𝑁)
147, 13breqtrrd 4611 . . . 4 (𝑁 ∈ ℕ0𝑁 ≤ ((2 · 𝑁) / 2))
152, 14syl 17 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ≤ ((2 · 𝑁) / 2))
16 bcmono 24802 . . 3 (((2 · 𝑁) ∈ ℕ0𝑁 ∈ (ℤ𝐾) ∧ 𝑁 ≤ ((2 · 𝑁) / 2)) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
174, 5, 15, 16syl3anc 1318 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
18 simpll 786 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℕ0)
191, 18, 3sylancr 694 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℕ0)
20 simplr 788 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℤ)
21 bccmpl 12958 . . . 4 (((2 · 𝑁) ∈ ℕ0𝐾 ∈ ℤ) → ((2 · 𝑁)C𝐾) = ((2 · 𝑁)C((2 · 𝑁) − 𝐾)))
2219, 20, 21syl2anc 691 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁)C𝐾) = ((2 · 𝑁)C((2 · 𝑁) − 𝐾)))
2318nn0red 11229 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
2423recnd 9947 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℂ)
25242timesd 11152 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) = (𝑁 + 𝑁))
2620zred 11358 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℝ)
27 eluzle 11576 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
2827adantl 481 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁𝐾)
2923, 26, 23, 28leadd2dd 10521 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (𝑁 + 𝑁) ≤ (𝑁 + 𝐾))
3025, 29eqbrtrd 4605 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ≤ (𝑁 + 𝐾))
3119nn0red 11229 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℝ)
3231, 26, 23lesubaddd 10503 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (((2 · 𝑁) − 𝐾) ≤ 𝑁 ↔ (2 · 𝑁) ≤ (𝑁 + 𝐾)))
3330, 32mpbird 246 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁) − 𝐾) ≤ 𝑁)
3419nn0zd 11356 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℤ)
3534, 20zsubcld 11363 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁) − 𝐾) ∈ ℤ)
3618nn0zd 11356 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℤ)
37 eluz 11577 . . . . . 6 ((((2 · 𝑁) − 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)) ↔ ((2 · 𝑁) − 𝐾) ≤ 𝑁))
3835, 36, 37syl2anc 691 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)) ↔ ((2 · 𝑁) − 𝐾) ≤ 𝑁))
3933, 38mpbird 246 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)))
4018, 14syl 17 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ≤ ((2 · 𝑁) / 2))
41 bcmono 24802 . . . 4 (((2 · 𝑁) ∈ ℕ0𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)) ∧ 𝑁 ≤ ((2 · 𝑁) / 2)) → ((2 · 𝑁)C((2 · 𝑁) − 𝐾)) ≤ ((2 · 𝑁)C𝑁))
4219, 39, 40, 41syl3anc 1318 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁)C((2 · 𝑁) − 𝐾)) ≤ ((2 · 𝑁)C𝑁))
4322, 42eqbrtrd 4605 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
44 simpr 476 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
45 nn0z 11277 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4645adantr 480 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
47 uztric 11585 . . 3 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
4844, 46, 47syl2anc 691 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
4917, 43, 48mpjaodan 823 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815   + caddc 9818   · cmul 9820  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  0cn0 11169  cz 11254  cuz 11563  Ccbc 12951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-fac 12923  df-bc 12952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator