Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > baseval | Structured version Visualization version GIF version |
Description: Value of the base set extractor. (Normally it is preferred to work with (Base‘ndx) rather than the hard-coded 1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
Ref | Expression |
---|---|
baseval.k | ⊢ 𝐾 ∈ V |
Ref | Expression |
---|---|
baseval | ⊢ (Base‘𝐾) = (𝐾‘1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseval.k | . 2 ⊢ 𝐾 ∈ V | |
2 | df-base 15700 | . 2 ⊢ Base = Slot 1 | |
3 | 1, 2 | strfvn 15712 | 1 ⊢ (Base‘𝐾) = (𝐾‘1) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 Vcvv 3173 ‘cfv 5804 1c1 9816 Basecbs 15695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-slot 15699 df-base 15700 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |