Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballss3 | Structured version Visualization version GIF version |
Description: A sufficient condition for a ball being a subset. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
ballss3.y | ⊢ Ⅎ𝑥𝜑 |
ballss3.d | ⊢ (𝜑 → 𝐷 ∈ (PsMet‘𝑋)) |
ballss3.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
ballss3.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
ballss3.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
ballss3 | ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballss3.y | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | simpl 472 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝜑) | |
3 | simpr 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) | |
4 | ballss3.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ (PsMet‘𝑋)) | |
5 | ballss3.p | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
6 | ballss3.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
7 | elblps 22002 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) | |
8 | 4, 5, 6, 7 | syl3anc 1318 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
10 | 3, 9 | mpbid 221 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)) |
11 | 10 | simpld 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ 𝑋) |
12 | 10 | simprd 478 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃𝐷𝑥) < 𝑅) |
13 | ballss3.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥 ∈ 𝐴) | |
14 | 2, 11, 12, 13 | syl3anc 1318 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑅)) → 𝑥 ∈ 𝐴) |
15 | 14 | ex 449 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) → 𝑥 ∈ 𝐴)) |
16 | 1, 15 | ralrimi 2940 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝑃(ball‘𝐷)𝑅)𝑥 ∈ 𝐴) |
17 | dfss3 3558 | . 2 ⊢ ((𝑃(ball‘𝐷)𝑅) ⊆ 𝐴 ↔ ∀𝑥 ∈ (𝑃(ball‘𝐷)𝑅)𝑥 ∈ 𝐴) | |
18 | 16, 17 | sylibr 223 | 1 ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 Ⅎwnf 1699 ∈ wcel 1977 ∀wral 2896 ⊆ wss 3540 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 ℝ*cxr 9952 < clt 9953 PsMetcpsmet 19551 ballcbl 19554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-map 7746 df-xr 9957 df-psmet 19559 df-bl 19562 |
This theorem is referenced by: ioorrnopnlem 39200 |
Copyright terms: Public domain | W3C validator |