Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotth Structured version   Visualization version   GIF version

Theorem ballotth 29926
Description: Bertrand's ballot problem : the probability that A is ahead throughout the counting. This is Metamath 100 proof #30. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotth (𝑃𝐸) = ((𝑀𝑁) / (𝑀 + 𝑁))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝑖,𝐸,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖,𝑘   𝑥,𝑐,𝐹   𝑥,𝑀   𝑥,𝑁,𝑘,𝑖   𝑥,𝐸   𝑥,𝑂
Allowed substitution hints:   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑐)   𝑆(𝑥)   𝐼(𝑥)

Proof of Theorem ballotth
StepHypRef Expression
1 ballotth.e . . . . . 6 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
2 ssrab2 3650 . . . . . 6 {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)} ⊆ 𝑂
31, 2eqsstri 3598 . . . . 5 𝐸𝑂
4 fzfi 12633 . . . . . . . . . . 11 (1...(𝑀 + 𝑁)) ∈ Fin
5 pwfi 8144 . . . . . . . . . . 11 ((1...(𝑀 + 𝑁)) ∈ Fin ↔ 𝒫 (1...(𝑀 + 𝑁)) ∈ Fin)
64, 5mpbi 219 . . . . . . . . . 10 𝒫 (1...(𝑀 + 𝑁)) ∈ Fin
7 ballotth.o . . . . . . . . . . 11 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
8 ssrab2 3650 . . . . . . . . . . 11 {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀} ⊆ 𝒫 (1...(𝑀 + 𝑁))
97, 8eqsstri 3598 . . . . . . . . . 10 𝑂 ⊆ 𝒫 (1...(𝑀 + 𝑁))
10 ssfi 8065 . . . . . . . . . 10 ((𝒫 (1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝑂 ⊆ 𝒫 (1...(𝑀 + 𝑁))) → 𝑂 ∈ Fin)
116, 9, 10mp2an 704 . . . . . . . . 9 𝑂 ∈ Fin
12 ssfi 8065 . . . . . . . . 9 ((𝑂 ∈ Fin ∧ 𝐸𝑂) → 𝐸 ∈ Fin)
1311, 3, 12mp2an 704 . . . . . . . 8 𝐸 ∈ Fin
1413elexi 3186 . . . . . . 7 𝐸 ∈ V
1514elpw 4114 . . . . . 6 (𝐸 ∈ 𝒫 𝑂𝐸𝑂)
16 fveq2 6103 . . . . . . . 8 (𝑥 = 𝐸 → (#‘𝑥) = (#‘𝐸))
1716oveq1d 6564 . . . . . . 7 (𝑥 = 𝐸 → ((#‘𝑥) / (#‘𝑂)) = ((#‘𝐸) / (#‘𝑂)))
18 ballotth.p . . . . . . 7 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
19 ovex 6577 . . . . . . 7 ((#‘𝐸) / (#‘𝑂)) ∈ V
2017, 18, 19fvmpt 6191 . . . . . 6 (𝐸 ∈ 𝒫 𝑂 → (𝑃𝐸) = ((#‘𝐸) / (#‘𝑂)))
2115, 20sylbir 224 . . . . 5 (𝐸𝑂 → (𝑃𝐸) = ((#‘𝐸) / (#‘𝑂)))
223, 21ax-mp 5 . . . 4 (𝑃𝐸) = ((#‘𝐸) / (#‘𝑂))
23 hashssdif 13061 . . . . . . . 8 ((𝑂 ∈ Fin ∧ 𝐸𝑂) → (#‘(𝑂𝐸)) = ((#‘𝑂) − (#‘𝐸)))
2411, 3, 23mp2an 704 . . . . . . 7 (#‘(𝑂𝐸)) = ((#‘𝑂) − (#‘𝐸))
2524eqcomi 2619 . . . . . 6 ((#‘𝑂) − (#‘𝐸)) = (#‘(𝑂𝐸))
26 hashcl 13009 . . . . . . . . 9 (𝑂 ∈ Fin → (#‘𝑂) ∈ ℕ0)
2711, 26ax-mp 5 . . . . . . . 8 (#‘𝑂) ∈ ℕ0
2827nn0cni 11181 . . . . . . 7 (#‘𝑂) ∈ ℂ
29 hashcl 13009 . . . . . . . . 9 (𝐸 ∈ Fin → (#‘𝐸) ∈ ℕ0)
3013, 29ax-mp 5 . . . . . . . 8 (#‘𝐸) ∈ ℕ0
3130nn0cni 11181 . . . . . . 7 (#‘𝐸) ∈ ℂ
32 difss 3699 . . . . . . . . . 10 (𝑂𝐸) ⊆ 𝑂
33 ssfi 8065 . . . . . . . . . 10 ((𝑂 ∈ Fin ∧ (𝑂𝐸) ⊆ 𝑂) → (𝑂𝐸) ∈ Fin)
3411, 32, 33mp2an 704 . . . . . . . . 9 (𝑂𝐸) ∈ Fin
35 hashcl 13009 . . . . . . . . 9 ((𝑂𝐸) ∈ Fin → (#‘(𝑂𝐸)) ∈ ℕ0)
3634, 35ax-mp 5 . . . . . . . 8 (#‘(𝑂𝐸)) ∈ ℕ0
3736nn0cni 11181 . . . . . . 7 (#‘(𝑂𝐸)) ∈ ℂ
3828, 31, 37subsub23i 10250 . . . . . 6 (((#‘𝑂) − (#‘𝐸)) = (#‘(𝑂𝐸)) ↔ ((#‘𝑂) − (#‘(𝑂𝐸))) = (#‘𝐸))
3925, 38mpbi 219 . . . . 5 ((#‘𝑂) − (#‘(𝑂𝐸))) = (#‘𝐸)
4039oveq1i 6559 . . . 4 (((#‘𝑂) − (#‘(𝑂𝐸))) / (#‘𝑂)) = ((#‘𝐸) / (#‘𝑂))
4122, 40eqtr4i 2635 . . 3 (𝑃𝐸) = (((#‘𝑂) − (#‘(𝑂𝐸))) / (#‘𝑂))
42 ballotth.m . . . . . . 7 𝑀 ∈ ℕ
43 ballotth.n . . . . . . 7 𝑁 ∈ ℕ
4442, 43, 7ballotlem1 29875 . . . . . 6 (#‘𝑂) = ((𝑀 + 𝑁)C𝑀)
4542nnnn0i 11177 . . . . . . . . 9 𝑀 ∈ ℕ0
46 nnaddcl 10919 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
4742, 43, 46mp2an 704 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ ℕ
4847nnnn0i 11177 . . . . . . . . 9 (𝑀 + 𝑁) ∈ ℕ0
4942nnrei 10906 . . . . . . . . . 10 𝑀 ∈ ℝ
5043nnnn0i 11177 . . . . . . . . . 10 𝑁 ∈ ℕ0
5149, 50nn0addge1i 11218 . . . . . . . . 9 𝑀 ≤ (𝑀 + 𝑁)
52 elfz2nn0 12300 . . . . . . . . 9 (𝑀 ∈ (0...(𝑀 + 𝑁)) ↔ (𝑀 ∈ ℕ0 ∧ (𝑀 + 𝑁) ∈ ℕ0𝑀 ≤ (𝑀 + 𝑁)))
5345, 48, 51, 52mpbir3an 1237 . . . . . . . 8 𝑀 ∈ (0...(𝑀 + 𝑁))
54 bccl2 12972 . . . . . . . 8 (𝑀 ∈ (0...(𝑀 + 𝑁)) → ((𝑀 + 𝑁)C𝑀) ∈ ℕ)
5553, 54ax-mp 5 . . . . . . 7 ((𝑀 + 𝑁)C𝑀) ∈ ℕ
5655nnne0i 10932 . . . . . 6 ((𝑀 + 𝑁)C𝑀) ≠ 0
5744, 56eqnetri 2852 . . . . 5 (#‘𝑂) ≠ 0
5828, 57pm3.2i 470 . . . 4 ((#‘𝑂) ∈ ℂ ∧ (#‘𝑂) ≠ 0)
59 divsubdir 10600 . . . 4 (((#‘𝑂) ∈ ℂ ∧ (#‘(𝑂𝐸)) ∈ ℂ ∧ ((#‘𝑂) ∈ ℂ ∧ (#‘𝑂) ≠ 0)) → (((#‘𝑂) − (#‘(𝑂𝐸))) / (#‘𝑂)) = (((#‘𝑂) / (#‘𝑂)) − ((#‘(𝑂𝐸)) / (#‘𝑂))))
6028, 37, 58, 59mp3an 1416 . . 3 (((#‘𝑂) − (#‘(𝑂𝐸))) / (#‘𝑂)) = (((#‘𝑂) / (#‘𝑂)) − ((#‘(𝑂𝐸)) / (#‘𝑂)))
6128, 57dividi 10637 . . . 4 ((#‘𝑂) / (#‘𝑂)) = 1
6261oveq1i 6559 . . 3 (((#‘𝑂) / (#‘𝑂)) − ((#‘(𝑂𝐸)) / (#‘𝑂))) = (1 − ((#‘(𝑂𝐸)) / (#‘𝑂)))
6341, 60, 623eqtri 2636 . 2 (𝑃𝐸) = (1 − ((#‘(𝑂𝐸)) / (#‘𝑂)))
64 ballotth.f . . . . . . 7 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
65 ballotth.mgtn . . . . . . 7 𝑁 < 𝑀
66 ballotth.i . . . . . . 7 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
67 ballotth.s . . . . . . 7 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
68 ballotth.r . . . . . . 7 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
6942, 43, 7, 18, 64, 1, 65, 66, 67, 68ballotlem8 29925 . . . . . 6 (#‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) = (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})
7069oveq1i 6559 . . . . 5 ((#‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) = ((#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}))
7170oveq1i 6559 . . . 4 (((#‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) / (#‘𝑂)) = (((#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) / (#‘𝑂))
72 rabxm 3915 . . . . . . 7 (𝑂𝐸) = ({𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∪ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})
7372fveq2i 6106 . . . . . 6 (#‘(𝑂𝐸)) = (#‘({𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∪ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}))
74 ssrab2 3650 . . . . . . . . . 10 {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ⊆ (𝑂𝐸)
7574, 32sstri 3577 . . . . . . . . 9 {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ⊆ 𝑂
7675, 9sstri 3577 . . . . . . . 8 {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ⊆ 𝒫 (1...(𝑀 + 𝑁))
77 ssfi 8065 . . . . . . . 8 ((𝒫 (1...(𝑀 + 𝑁)) ∈ Fin ∧ {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ⊆ 𝒫 (1...(𝑀 + 𝑁))) → {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∈ Fin)
786, 76, 77mp2an 704 . . . . . . 7 {𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∈ Fin
79 ssrab2 3650 . . . . . . . . . 10 {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ (𝑂𝐸)
8079, 32sstri 3577 . . . . . . . . 9 {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂
8180, 9sstri 3577 . . . . . . . 8 {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ 𝒫 (1...(𝑀 + 𝑁))
82 ssfi 8065 . . . . . . . 8 ((𝒫 (1...(𝑀 + 𝑁)) ∈ Fin ∧ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ 𝒫 (1...(𝑀 + 𝑁))) → {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ∈ Fin)
836, 81, 82mp2an 704 . . . . . . 7 {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ∈ Fin
84 rabnc 3916 . . . . . . 7 ({𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∩ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) = ∅
85 hashun 13032 . . . . . . 7 (({𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∈ Fin ∧ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ∈ Fin ∧ ({𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∩ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) = ∅) → (#‘({𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∪ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) = ((#‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})))
8678, 83, 84, 85mp3an 1416 . . . . . 6 (#‘({𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐} ∪ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) = ((#‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}))
8773, 86eqtri 2632 . . . . 5 (#‘(𝑂𝐸)) = ((#‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}))
8887oveq1i 6559 . . . 4 ((#‘(𝑂𝐸)) / (#‘𝑂)) = (((#‘{𝑐 ∈ (𝑂𝐸) ∣ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) / (#‘𝑂))
89 ssrab2 3650 . . . . . . . . 9 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂
9011elexi 3186 . . . . . . . . . 10 𝑂 ∈ V
9190elpw2 4755 . . . . . . . . 9 ({𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 ↔ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂)
9289, 91mpbir 220 . . . . . . . 8 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂
93 fveq2 6103 . . . . . . . . . 10 (𝑥 = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → (#‘𝑥) = (#‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}))
9493oveq1d 6564 . . . . . . . . 9 (𝑥 = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → ((#‘𝑥) / (#‘𝑂)) = ((#‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂)))
95 ovex 6577 . . . . . . . . 9 ((#‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂)) ∈ V
9694, 18, 95fvmpt 6191 . . . . . . . 8 ({𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 → (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((#‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂)))
9792, 96ax-mp 5 . . . . . . 7 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((#‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂))
9842, 43, 7, 18ballotlem2 29877 . . . . . . 7 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁))
99 nfrab1 3099 . . . . . . . . . . . 12 𝑐{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}
100 nfrab1 3099 . . . . . . . . . . . 12 𝑐{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}
10199, 100dfss2f 3559 . . . . . . . . . . 11 ({𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ↔ ∀𝑐(𝑐 ∈ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → 𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}))
10242, 43, 7, 18, 64, 1ballotlem4 29887 . . . . . . . . . . . . . 14 (𝑐𝑂 → (¬ 1 ∈ 𝑐 → ¬ 𝑐𝐸))
103102imdistani 722 . . . . . . . . . . . . 13 ((𝑐𝑂 ∧ ¬ 1 ∈ 𝑐) → (𝑐𝑂 ∧ ¬ 𝑐𝐸))
104 rabid 3095 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ↔ (𝑐𝑂 ∧ ¬ 1 ∈ 𝑐))
105 eldif 3550 . . . . . . . . . . . . 13 (𝑐 ∈ (𝑂𝐸) ↔ (𝑐𝑂 ∧ ¬ 𝑐𝐸))
106103, 104, 1053imtr4i 280 . . . . . . . . . . . 12 (𝑐 ∈ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → 𝑐 ∈ (𝑂𝐸))
107104simprbi 479 . . . . . . . . . . . 12 (𝑐 ∈ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → ¬ 1 ∈ 𝑐)
108 rabid 3095 . . . . . . . . . . . 12 (𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ↔ (𝑐 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝑐))
109106, 107, 108sylanbrc 695 . . . . . . . . . . 11 (𝑐 ∈ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → 𝑐 ∈ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})
110101, 109mpgbir 1717 . . . . . . . . . 10 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}
111 rabss2 3648 . . . . . . . . . . 11 ((𝑂𝐸) ⊆ 𝑂 → {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐})
11232, 111ax-mp 5 . . . . . . . . . 10 {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ⊆ {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}
113110, 112eqssi 3584 . . . . . . . . 9 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} = {𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}
114113fveq2i 6106 . . . . . . . 8 (#‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})
115114oveq1i 6559 . . . . . . 7 ((#‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂)) = ((#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂))
11697, 98, 1153eqtr3i 2640 . . . . . 6 (𝑁 / (𝑀 + 𝑁)) = ((#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂))
117116oveq2i 6560 . . . . 5 (2 · (𝑁 / (𝑀 + 𝑁))) = (2 · ((#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂)))
118 2cn 10968 . . . . . 6 2 ∈ ℂ
119 hashcl 13009 . . . . . . . 8 ({𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐} ∈ Fin → (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) ∈ ℕ0)
12083, 119ax-mp 5 . . . . . . 7 (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) ∈ ℕ0
121120nn0cni 11181 . . . . . 6 (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) ∈ ℂ
122118, 121, 28, 57divassi 10660 . . . . 5 ((2 · (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) / (#‘𝑂)) = (2 · ((#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) / (#‘𝑂)))
1231212timesi 11024 . . . . . 6 (2 · (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) = ((#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}))
124123oveq1i 6559 . . . . 5 ((2 · (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) / (#‘𝑂)) = (((#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) / (#‘𝑂))
125117, 122, 1243eqtr2i 2638 . . . 4 (2 · (𝑁 / (𝑀 + 𝑁))) = (((#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐}) + (#‘{𝑐 ∈ (𝑂𝐸) ∣ ¬ 1 ∈ 𝑐})) / (#‘𝑂))
12671, 88, 1253eqtr4ri 2643 . . 3 (2 · (𝑁 / (𝑀 + 𝑁))) = ((#‘(𝑂𝐸)) / (#‘𝑂))
127126oveq2i 6560 . 2 (1 − (2 · (𝑁 / (𝑀 + 𝑁)))) = (1 − ((#‘(𝑂𝐸)) / (#‘𝑂)))
12847nncni 10907 . . . 4 (𝑀 + 𝑁) ∈ ℂ
12943nncni 10907 . . . . 5 𝑁 ∈ ℂ
130118, 129mulcli 9924 . . . 4 (2 · 𝑁) ∈ ℂ
13147nnne0i 10932 . . . . 5 (𝑀 + 𝑁) ≠ 0
132128, 131pm3.2i 470 . . . 4 ((𝑀 + 𝑁) ∈ ℂ ∧ (𝑀 + 𝑁) ≠ 0)
133 divsubdir 10600 . . . 4 (((𝑀 + 𝑁) ∈ ℂ ∧ (2 · 𝑁) ∈ ℂ ∧ ((𝑀 + 𝑁) ∈ ℂ ∧ (𝑀 + 𝑁) ≠ 0)) → (((𝑀 + 𝑁) − (2 · 𝑁)) / (𝑀 + 𝑁)) = (((𝑀 + 𝑁) / (𝑀 + 𝑁)) − ((2 · 𝑁) / (𝑀 + 𝑁))))
134128, 130, 132, 133mp3an 1416 . . 3 (((𝑀 + 𝑁) − (2 · 𝑁)) / (𝑀 + 𝑁)) = (((𝑀 + 𝑁) / (𝑀 + 𝑁)) − ((2 · 𝑁) / (𝑀 + 𝑁)))
1351292timesi 11024 . . . . . 6 (2 · 𝑁) = (𝑁 + 𝑁)
136135oveq2i 6560 . . . . 5 ((𝑀 + 𝑁) − (2 · 𝑁)) = ((𝑀 + 𝑁) − (𝑁 + 𝑁))
13742nncni 10907 . . . . . . 7 𝑀 ∈ ℂ
138137, 129, 129, 129addsub4i 10256 . . . . . 6 ((𝑀 + 𝑁) − (𝑁 + 𝑁)) = ((𝑀𝑁) + (𝑁𝑁))
139129subidi 10231 . . . . . . 7 (𝑁𝑁) = 0
140139oveq2i 6560 . . . . . 6 ((𝑀𝑁) + (𝑁𝑁)) = ((𝑀𝑁) + 0)
141137, 129subcli 10236 . . . . . . 7 (𝑀𝑁) ∈ ℂ
142141addid1i 10102 . . . . . 6 ((𝑀𝑁) + 0) = (𝑀𝑁)
143138, 140, 1423eqtri 2636 . . . . 5 ((𝑀 + 𝑁) − (𝑁 + 𝑁)) = (𝑀𝑁)
144136, 143eqtri 2632 . . . 4 ((𝑀 + 𝑁) − (2 · 𝑁)) = (𝑀𝑁)
145144oveq1i 6559 . . 3 (((𝑀 + 𝑁) − (2 · 𝑁)) / (𝑀 + 𝑁)) = ((𝑀𝑁) / (𝑀 + 𝑁))
146128, 131dividi 10637 . . . 4 ((𝑀 + 𝑁) / (𝑀 + 𝑁)) = 1
147118, 129, 128, 131divassi 10660 . . . 4 ((2 · 𝑁) / (𝑀 + 𝑁)) = (2 · (𝑁 / (𝑀 + 𝑁)))
148146, 147oveq12i 6561 . . 3 (((𝑀 + 𝑁) / (𝑀 + 𝑁)) − ((2 · 𝑁) / (𝑀 + 𝑁))) = (1 − (2 · (𝑁 / (𝑀 + 𝑁))))
149134, 145, 1483eqtr3ri 2641 . 2 (1 − (2 · (𝑁 / (𝑀 + 𝑁)))) = ((𝑀𝑁) / (𝑀 + 𝑁))
15063, 127, 1493eqtr2i 2638 1 (𝑃𝐸) = ((𝑀𝑁) / (𝑀 + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  cima 5041  cfv 5804  (class class class)co 6549  Fincfn 7841  infcinf 8230  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  ...cfz 12197  Ccbc 12951  #chash 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-fac 12923  df-bc 12952  df-hash 12980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator