Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsf1o Structured version   Visualization version   GIF version

Theorem ballotlemsf1o 29902
Description: The defined 𝑆 is a bijection, and an involution. (Contributed by Thierry Arnoux, 14-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
Assertion
Ref Expression
ballotlemsf1o (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemsf1o
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . . . 5 𝑀 ∈ ℕ
2 ballotth.n . . . . 5 𝑁 ∈ ℕ
3 ballotth.o . . . . 5 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
4 ballotth.p . . . . 5 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
5 ballotth.f . . . . 5 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . 5 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . 5 𝑁 < 𝑀
8 ballotth.i . . . . 5 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . 5 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsval 29897 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
111, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsv 29898 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑖) = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖))
121, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsdom 29900 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑖) ∈ (1...(𝑀 + 𝑁)))
1311, 12eqeltrrd 2689 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖) ∈ (1...(𝑀 + 𝑁)))
141, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsv 29898 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑗) = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
151, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsdom 29900 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑗) ∈ (1...(𝑀 + 𝑁)))
1614, 15eqeltrrd 2689 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗) ∈ (1...(𝑀 + 𝑁)))
17 oveq2 6557 . . . . . 6 (𝑖 = (((𝐼𝐶) + 1) − 𝑗) → (((𝐼𝐶) + 1) − 𝑖) = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑗)))
18 id 22 . . . . . 6 (𝑖 = 𝑗𝑖 = 𝑗)
19 breq1 4586 . . . . . 6 (𝑖 = (((𝐼𝐶) + 1) − 𝑗) → (𝑖 ≤ (𝐼𝐶) ↔ (((𝐼𝐶) + 1) − 𝑗) ≤ (𝐼𝐶)))
20 breq1 4586 . . . . . 6 (𝑖 = 𝑗 → (𝑖 ≤ (𝐼𝐶) ↔ 𝑗 ≤ (𝐼𝐶)))
211, 2, 3, 4, 5, 6, 7, 8ballotlemiex 29890 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
2221simpld 474 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
23 elfzelz 12213 . . . . . . . . . . . 12 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℤ)
2423peano2zd 11361 . . . . . . . . . . 11 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → ((𝐼𝐶) + 1) ∈ ℤ)
2522, 24syl 17 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) + 1) ∈ ℤ)
2625zcnd 11359 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) + 1) ∈ ℂ)
2726adantr 480 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → ((𝐼𝐶) + 1) ∈ ℂ)
28 elfzelz 12213 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑀 + 𝑁)) → 𝑗 ∈ ℤ)
2928zcnd 11359 . . . . . . . . 9 (𝑗 ∈ (1...(𝑀 + 𝑁)) → 𝑗 ∈ ℂ)
3029ad2antll 761 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 ∈ ℂ)
3127, 30nncand 10276 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑗)) = 𝑗)
3231eqcomd 2616 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑗)))
3322, 23syl 17 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
3433adantr 480 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (𝐼𝐶) ∈ ℤ)
35 elfznn 12241 . . . . . . . . 9 (𝑗 ∈ (1...(𝑀 + 𝑁)) → 𝑗 ∈ ℕ)
3635ad2antll 761 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 ∈ ℕ)
3734, 36ltesubnnd 28955 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − 𝑗) ≤ (𝐼𝐶))
3837adantr 480 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑗 ≤ (𝐼𝐶)) → (((𝐼𝐶) + 1) − 𝑗) ≤ (𝐼𝐶))
39 vex 3176 . . . . . . 7 𝑗 ∈ V
4039a1i 11 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑗 ∈ V)
41 ovex 6577 . . . . . . 7 (((𝐼𝐶) + 1) − 𝑗) ∈ V
4241a1i 11 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − 𝑗) ∈ V)
4317, 18, 19, 20, 32, 38, 40, 42ifeqeqx 28745 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗)) → 𝑗 = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖))
44 oveq2 6557 . . . . . 6 (𝑗 = (((𝐼𝐶) + 1) − 𝑖) → (((𝐼𝐶) + 1) − 𝑗) = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑖)))
45 id 22 . . . . . 6 (𝑗 = 𝑖𝑗 = 𝑖)
46 breq1 4586 . . . . . 6 (𝑗 = (((𝐼𝐶) + 1) − 𝑖) → (𝑗 ≤ (𝐼𝐶) ↔ (((𝐼𝐶) + 1) − 𝑖) ≤ (𝐼𝐶)))
47 breq1 4586 . . . . . 6 (𝑗 = 𝑖 → (𝑗 ≤ (𝐼𝐶) ↔ 𝑖 ≤ (𝐼𝐶)))
48 elfzelz 12213 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ ℤ)
4948zcnd 11359 . . . . . . . . 9 (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ ℂ)
5049ad2antrl 760 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑖 ∈ ℂ)
5127, 50nncand 10276 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑖)) = 𝑖)
5251eqcomd 2616 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑖 = (((𝐼𝐶) + 1) − (((𝐼𝐶) + 1) − 𝑖)))
5334adantr 480 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → (𝐼𝐶) ∈ ℤ)
54 simplrl 796 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → 𝑖 ∈ (1...(𝑀 + 𝑁)))
55 elfznn 12241 . . . . . . . 8 (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ ℕ)
5654, 55syl 17 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → 𝑖 ∈ ℕ)
5753, 56ltesubnnd 28955 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑖 ≤ (𝐼𝐶)) → (((𝐼𝐶) + 1) − 𝑖) ≤ (𝐼𝐶))
58 vex 3176 . . . . . . 7 𝑖 ∈ V
5958a1i 11 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → 𝑖 ∈ V)
60 ovex 6577 . . . . . . 7 (((𝐼𝐶) + 1) − 𝑖) ∈ V
6160a1i 11 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (((𝐼𝐶) + 1) − 𝑖) ∈ V)
6244, 45, 46, 47, 52, 57, 59, 61ifeqeqx 28745 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) ∧ 𝑗 = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) → 𝑖 = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
6343, 62impbida 873 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁)))) → (𝑖 = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗) ↔ 𝑗 = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
6410, 13, 16, 63f1o3d 28813 . . 3 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))))
6564simpld 474 . 2 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)))
66 oveq2 6557 . . . . . 6 (𝑖 = 𝑗 → (((𝐼𝐶) + 1) − 𝑖) = (((𝐼𝐶) + 1) − 𝑗))
6720, 66, 18ifbieq12d 4063 . . . . 5 (𝑖 = 𝑗 → if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖) = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
6867cbvmptv 4678 . . . 4 (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
6968a1i 11 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗)))
7064simprd 478 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗)))
7169, 10, 703eqtr4rd 2655 . 2 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑆𝐶))
7265, 71jca 553 1 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  cdif 3537  cin 3539  ifcif 4036  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  ccnv 5037  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  infcinf 8230  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  cz 11254  ...cfz 12197  #chash 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-hash 12980
This theorem is referenced by:  ballotlemsima  29904  ballotlemscr  29907  ballotlemrv  29908  ballotlemro  29911  ballotlemfrc  29915  ballotlemrinv0  29921
  Copyright terms: Public domain W3C validator