Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrci Structured version   Visualization version   GIF version

Theorem ballotlemfrci 29916
Description: Reverse counting preserves a tie at the first tie. (Contributed by Thierry Arnoux, 21-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
ballotlemg = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣𝑢)) − (#‘(𝑣𝑢))))
Assertion
Ref Expression
ballotlemfrci (𝐶 ∈ (𝑂𝐸) → ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖   𝑣,𝑢,𝐶   𝑢,𝐼,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑘,𝑐)   𝑆(𝑥)   𝐸(𝑥,𝑣,𝑢)   (𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝐹(𝑥,𝑣,𝑢)   𝐼(𝑥)   𝑀(𝑥,𝑣,𝑢)   𝑁(𝑥,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑢)

Proof of Theorem ballotlemfrci
StepHypRef Expression
1 ballotth.m . . . . . . 7 𝑀 ∈ ℕ
2 ballotth.n . . . . . . 7 𝑁 ∈ ℕ
3 ballotth.o . . . . . . 7 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
4 ballotth.p . . . . . . 7 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
5 ballotth.f . . . . . . 7 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . . . 7 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . . . 7 𝑁 < 𝑀
8 ballotth.i . . . . . . 7 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
91, 2, 3, 4, 5, 6, 7, 8ballotlemiex 29890 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
109simpld 474 . . . . 5 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
11 elfzuz 12209 . . . . 5 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ (ℤ‘1))
12 eluzfz2 12220 . . . . 5 ((𝐼𝐶) ∈ (ℤ‘1) → (𝐼𝐶) ∈ (1...(𝐼𝐶)))
1310, 11, 123syl 18 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝐼𝐶)))
14 ballotth.s . . . . 5 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
15 ballotth.r . . . . 5 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
16 ballotlemg . . . . 5 = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((#‘(𝑣𝑢)) − (#‘(𝑣𝑢))))
171, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16ballotlemfrc 29915 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = (𝐶 (((𝑆𝐶)‘(𝐼𝐶))...(𝐼𝐶))))
1813, 17mpdan 699 . . 3 (𝐶 ∈ (𝑂𝐸) → ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = (𝐶 (((𝑆𝐶)‘(𝐼𝐶))...(𝐼𝐶))))
191, 2, 3, 4, 5, 6, 7, 8, 14ballotlemsi 29903 . . . . 5 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶)‘(𝐼𝐶)) = 1)
2019oveq1d 6564 . . . 4 (𝐶 ∈ (𝑂𝐸) → (((𝑆𝐶)‘(𝐼𝐶))...(𝐼𝐶)) = (1...(𝐼𝐶)))
2120oveq2d 6565 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝐶 (((𝑆𝐶)‘(𝐼𝐶))...(𝐼𝐶))) = (𝐶 (1...(𝐼𝐶))))
2218, 21eqtrd 2644 . 2 (𝐶 ∈ (𝑂𝐸) → ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
23 1eluzge0 11608 . . . . 5 1 ∈ (ℤ‘0)
24 fzss1 12251 . . . . 5 (1 ∈ (ℤ‘0) → (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁)))
2523, 24ax-mp 5 . . . 4 (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁))
2625, 10sseldi 3566 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (0...(𝑀 + 𝑁)))
271, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16ballotlemfg 29914 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
2826, 27mpdan 699 . 2 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘(𝐼𝐶)) = (𝐶 (1...(𝐼𝐶))))
299simprd 478 . 2 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
3022, 28, 293eqtr2d 2650 1 (𝐶 ∈ (𝑂𝐸) → ((𝐹‘(𝑅𝐶))‘(𝐼𝐶)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wral 2896  {crab 2900  cdif 3537  cin 3539  wss 3540  ifcif 4036  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  cima 5041  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841  infcinf 8230  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  cz 11254  cuz 11563  ...cfz 12197  #chash 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-hash 12980
This theorem is referenced by:  ballotlemrc  29919  ballotlemirc  29920
  Copyright terms: Public domain W3C validator