Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem1c Structured version   Visualization version   GIF version

Theorem ballotlem1c 29896
 Description: If the first vote is for A, the vote on the first tie is for B. (Contributed by Thierry Arnoux, 4-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlem1c ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ¬ (𝐼𝐶) ∈ 𝐶)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸   𝑖,𝐼
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlem1c
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
6 eldifi 3694 . . . 4 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
76ad2antrr 758 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → 𝐶𝑂)
8 ballotth.e . . . . . . . . . 10 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
9 ballotth.mgtn . . . . . . . . . 10 𝑁 < 𝑀
10 ballotth.i . . . . . . . . . 10 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
111, 2, 3, 4, 5, 8, 9, 10ballotlemiex 29890 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1211simpld 474 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
13 elfznn 12241 . . . . . . . 8 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℕ)
1412, 13syl 17 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℕ)
1514adantr 480 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (𝐼𝐶) ∈ ℕ)
161, 2, 3, 4, 5, 8, 9, 10ballotlemii 29892 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
17 eluz2b3 11638 . . . . . 6 ((𝐼𝐶) ∈ (ℤ‘2) ↔ ((𝐼𝐶) ∈ ℕ ∧ (𝐼𝐶) ≠ 1))
1815, 16, 17sylanbrc 695 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (𝐼𝐶) ∈ (ℤ‘2))
19 uz2m1nn 11639 . . . . 5 ((𝐼𝐶) ∈ (ℤ‘2) → ((𝐼𝐶) − 1) ∈ ℕ)
2018, 19syl 17 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℕ)
2120adantr 480 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℕ)
22 elnnuz 11600 . . . . . . 7 (((𝐼𝐶) − 1) ∈ ℕ ↔ ((𝐼𝐶) − 1) ∈ (ℤ‘1))
2322biimpi 205 . . . . . 6 (((𝐼𝐶) − 1) ∈ ℕ → ((𝐼𝐶) − 1) ∈ (ℤ‘1))
24 eluzfz1 12219 . . . . . 6 (((𝐼𝐶) − 1) ∈ (ℤ‘1) → 1 ∈ (1...((𝐼𝐶) − 1)))
2520, 23, 243syl 18 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → 1 ∈ (1...((𝐼𝐶) − 1)))
2625adantr 480 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → 1 ∈ (1...((𝐼𝐶) − 1)))
27 0le1 10430 . . . . . . 7 0 ≤ 1
28 1e0p1 11428 . . . . . . 7 1 = (0 + 1)
2927, 28breqtri 4608 . . . . . 6 0 ≤ (0 + 1)
30 1nn 10908 . . . . . . . . . . 11 1 ∈ ℕ
3130a1i 11 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℕ)
321, 2, 3, 4, 5, 6, 31ballotlemfp1 29880 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))))
3332simprd 478 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1)))
3433imp 444 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))
35 1m1e0 10966 . . . . . . . . . 10 (1 − 1) = 0
3635fveq2i 6106 . . . . . . . . 9 ((𝐹𝐶)‘(1 − 1)) = ((𝐹𝐶)‘0)
3736oveq1i 6559 . . . . . . . 8 (((𝐹𝐶)‘(1 − 1)) + 1) = (((𝐹𝐶)‘0) + 1)
3837a1i 11 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (((𝐹𝐶)‘(1 − 1)) + 1) = (((𝐹𝐶)‘0) + 1))
391, 2, 3, 4, 5ballotlemfval0 29884 . . . . . . . . . 10 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
406, 39syl 17 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘0) = 0)
4140adantr 480 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ((𝐹𝐶)‘0) = 0)
4241oveq1d 6564 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (((𝐹𝐶)‘0) + 1) = (0 + 1))
4334, 38, 423eqtrrd 2649 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → (0 + 1) = ((𝐹𝐶)‘1))
4429, 43syl5breq 4620 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → 0 ≤ ((𝐹𝐶)‘1))
4544adantr 480 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → 0 ≤ ((𝐹𝐶)‘1))
46 fveq2 6103 . . . . . 6 (𝑖 = 1 → ((𝐹𝐶)‘𝑖) = ((𝐹𝐶)‘1))
4746breq2d 4595 . . . . 5 (𝑖 = 1 → (0 ≤ ((𝐹𝐶)‘𝑖) ↔ 0 ≤ ((𝐹𝐶)‘1)))
4847rspcev 3282 . . . 4 ((1 ∈ (1...((𝐼𝐶) − 1)) ∧ 0 ≤ ((𝐹𝐶)‘1)) → ∃𝑖 ∈ (1...((𝐼𝐶) − 1))0 ≤ ((𝐹𝐶)‘𝑖))
4926, 45, 48syl2anc 691 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → ∃𝑖 ∈ (1...((𝐼𝐶) − 1))0 ≤ ((𝐹𝐶)‘𝑖))
50 df-neg 10148 . . . . . 6 -1 = (0 − 1)
511, 2, 3, 4, 5, 6, 14ballotlemfp1 29880 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((¬ (𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) − 1)) ∧ ((𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1))))
5251simprd 478 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ 𝐶 → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1)))
5352imp 444 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘(𝐼𝐶)) = (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1))
5411simprd 478 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
5554adantr 480 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
5653, 55eqtr3d 2646 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1) = 0)
57 0cnd 9912 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → 0 ∈ ℂ)
58 1cnd 9935 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → 1 ∈ ℂ)
596adantr 480 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → 𝐶𝑂)
6014nnzd 11357 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
6160adantr 480 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → (𝐼𝐶) ∈ ℤ)
62 1zzd 11285 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → 1 ∈ ℤ)
6361, 62zsubcld 11363 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐼𝐶) − 1) ∈ ℤ)
641, 2, 3, 4, 5, 59, 63ballotlemfelz 29879 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) ∈ ℤ)
6564zcnd 11359 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) ∈ ℂ)
6657, 58, 65subadd2d 10290 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((0 − 1) = ((𝐹𝐶)‘((𝐼𝐶) − 1)) ↔ (((𝐹𝐶)‘((𝐼𝐶) − 1)) + 1) = 0))
6756, 66mpbird 246 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → (0 − 1) = ((𝐹𝐶)‘((𝐼𝐶) − 1)))
6850, 67syl5eq 2656 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → -1 = ((𝐹𝐶)‘((𝐼𝐶) − 1)))
69 neg1lt0 11004 . . . . 5 -1 < 0
7068, 69syl6eqbrr 4623 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) < 0)
7170adantlr 747 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → ((𝐹𝐶)‘((𝐼𝐶) − 1)) < 0)
721, 2, 3, 4, 5, 7, 21, 49, 71ballotlemfcc 29882 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
731, 2, 3, 4, 5, 8, 9, 10ballotlemimin 29894 . . 3 (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
7473ad2antrr 758 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) ∧ (𝐼𝐶) ∈ 𝐶) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
7572, 74pm2.65da 598 1 ((𝐶 ∈ (𝑂𝐸) ∧ 1 ∈ 𝐶) → ¬ (𝐼𝐶) ∈ 𝐶)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900   ∖ cdif 3537   ∩ cin 3539  𝒫 cpw 4108   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  infcinf 8230  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954   − cmin 10145  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  #chash 12979 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980 This theorem is referenced by:  ballotlem7  29924
 Copyright terms: Public domain W3C validator