MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrrecex Structured version   Visualization version   GIF version

Theorem axrrecex 9840
Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rrecex 9864. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axrrecex ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem axrrecex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 9808 . . . 4 (𝐴 ∈ ℝ ↔ ∃𝑦R𝑦, 0R⟩ = 𝐴)
2 df-rex 2901 . . . 4 (∃𝑦R𝑦, 0R⟩ = 𝐴 ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
31, 2bitri 262 . . 3 (𝐴 ∈ ℝ ↔ ∃𝑦(𝑦R ∧ ⟨𝑦, 0R⟩ = 𝐴))
4 neeq1 2843 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ ≠ 0 ↔ 𝐴 ≠ 0))
5 oveq1 6534 . . . . . 6 (⟨𝑦, 0R⟩ = 𝐴 → (⟨𝑦, 0R⟩ · 𝑥) = (𝐴 · 𝑥))
65eqeq1d 2611 . . . . 5 (⟨𝑦, 0R⟩ = 𝐴 → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (𝐴 · 𝑥) = 1))
76rexbidv 3033 . . . 4 (⟨𝑦, 0R⟩ = 𝐴 → (∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
84, 7imbi12d 332 . . 3 (⟨𝑦, 0R⟩ = 𝐴 → ((⟨𝑦, 0R⟩ ≠ 0 → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1) ↔ (𝐴 ≠ 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)))
9 df-0 9799 . . . . . . 7 0 = ⟨0R, 0R
109eqeq2i 2621 . . . . . 6 (⟨𝑦, 0R⟩ = 0 ↔ ⟨𝑦, 0R⟩ = ⟨0R, 0R⟩)
11 vex 3175 . . . . . . 7 𝑦 ∈ V
1211eqresr 9814 . . . . . 6 (⟨𝑦, 0R⟩ = ⟨0R, 0R⟩ ↔ 𝑦 = 0R)
1310, 12bitri 262 . . . . 5 (⟨𝑦, 0R⟩ = 0 ↔ 𝑦 = 0R)
1413necon3bii 2833 . . . 4 (⟨𝑦, 0R⟩ ≠ 0 ↔ 𝑦 ≠ 0R)
15 recexsr 9784 . . . . . 6 ((𝑦R𝑦 ≠ 0R) → ∃𝑧R (𝑦 ·R 𝑧) = 1R)
1615ex 448 . . . . 5 (𝑦R → (𝑦 ≠ 0R → ∃𝑧R (𝑦 ·R 𝑧) = 1R))
17 opelreal 9807 . . . . . . . . . 10 (⟨𝑧, 0R⟩ ∈ ℝ ↔ 𝑧R)
1817anbi1i 726 . . . . . . . . 9 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (𝑧R ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1))
19 mulresr 9816 . . . . . . . . . . . 12 ((𝑦R𝑧R) → (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = ⟨(𝑦 ·R 𝑧), 0R⟩)
2019eqeq1d 2611 . . . . . . . . . . 11 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = 1))
21 df-1 9800 . . . . . . . . . . . . 13 1 = ⟨1R, 0R
2221eqeq2i 2621 . . . . . . . . . . . 12 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ ⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩)
23 ovex 6555 . . . . . . . . . . . . 13 (𝑦 ·R 𝑧) ∈ V
2423eqresr 9814 . . . . . . . . . . . 12 (⟨(𝑦 ·R 𝑧), 0R⟩ = ⟨1R, 0R⟩ ↔ (𝑦 ·R 𝑧) = 1R)
2522, 24bitri 262 . . . . . . . . . . 11 (⟨(𝑦 ·R 𝑧), 0R⟩ = 1 ↔ (𝑦 ·R 𝑧) = 1R)
2620, 25syl6bb 274 . . . . . . . . . 10 ((𝑦R𝑧R) → ((⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1 ↔ (𝑦 ·R 𝑧) = 1R))
2726pm5.32da 670 . . . . . . . . 9 (𝑦R → ((𝑧R ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (𝑧R ∧ (𝑦 ·R 𝑧) = 1R)))
2818, 27syl5bb 270 . . . . . . . 8 (𝑦R → ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) ↔ (𝑧R ∧ (𝑦 ·R 𝑧) = 1R)))
29 oveq2 6535 . . . . . . . . . 10 (𝑥 = ⟨𝑧, 0R⟩ → (⟨𝑦, 0R⟩ · 𝑥) = (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩))
3029eqeq1d 2611 . . . . . . . . 9 (𝑥 = ⟨𝑧, 0R⟩ → ((⟨𝑦, 0R⟩ · 𝑥) = 1 ↔ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1))
3130rspcev 3281 . . . . . . . 8 ((⟨𝑧, 0R⟩ ∈ ℝ ∧ (⟨𝑦, 0R⟩ · ⟨𝑧, 0R⟩) = 1) → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1)
3228, 31syl6bir 242 . . . . . . 7 (𝑦R → ((𝑧R ∧ (𝑦 ·R 𝑧) = 1R) → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
3332expd 450 . . . . . 6 (𝑦R → (𝑧R → ((𝑦 ·R 𝑧) = 1R → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1)))
3433rexlimdv 3011 . . . . 5 (𝑦R → (∃𝑧R (𝑦 ·R 𝑧) = 1R → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
3516, 34syld 45 . . . 4 (𝑦R → (𝑦 ≠ 0R → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
3614, 35syl5bi 230 . . 3 (𝑦R → (⟨𝑦, 0R⟩ ≠ 0 → ∃𝑥 ∈ ℝ (⟨𝑦, 0R⟩ · 𝑥) = 1))
373, 8, 36gencl 3207 . 2 (𝐴 ∈ ℝ → (𝐴 ≠ 0 → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
3837imp 443 1 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wex 1694  wcel 1976  wne 2779  wrex 2896  cop 4130  (class class class)co 6527  Rcnr 9543  0Rc0r 9544  1Rc1r 9545   ·R cmr 9548  cr 9791  0cc0 9792  1c1 9793   · cmul 9797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-omul 7429  df-er 7606  df-ec 7608  df-qs 7612  df-ni 9550  df-pli 9551  df-mi 9552  df-lti 9553  df-plpq 9586  df-mpq 9587  df-ltpq 9588  df-enq 9589  df-nq 9590  df-erq 9591  df-plq 9592  df-mq 9593  df-1nq 9594  df-rq 9595  df-ltnq 9596  df-np 9659  df-1p 9660  df-plp 9661  df-mp 9662  df-ltp 9663  df-enr 9733  df-nr 9734  df-plr 9735  df-mr 9736  df-ltr 9737  df-0r 9738  df-1r 9739  df-m1r 9740  df-c 9798  df-0 9799  df-1 9800  df-r 9802  df-mul 9804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator