Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > axpjcl | Structured version Visualization version GIF version |
Description: Closure of a projection in its subspace. If we consider this together with axpjpj 27663 to be axioms, the need for the ax-hcompl 27443 can often be avoided for the kinds of theorems we are interested in here. An interesting project is to see how far we can go by using them in place of it. In particular, we can prove the orthomodular law pjomli 27678.) (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpjcl | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . 3 ⊢ ((projℎ‘𝐻)‘𝐴) = ((projℎ‘𝐻)‘𝐴) | |
2 | pjeq 27642 | . . 3 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (((projℎ‘𝐻)‘𝐴) = ((projℎ‘𝐻)‘𝐴) ↔ (((projℎ‘𝐻)‘𝐴) ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ 𝑥)))) | |
3 | 1, 2 | mpbii 222 | . 2 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (((projℎ‘𝐻)‘𝐴) ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ 𝑥))) |
4 | 3 | simpld 474 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 ‘cfv 5804 (class class class)co 6549 ℋchil 27160 +ℎ cva 27161 Cℋ cch 27170 ⊥cort 27171 projℎcpjh 27178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cc 9140 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 ax-mulf 9895 ax-hilex 27240 ax-hfvadd 27241 ax-hvcom 27242 ax-hvass 27243 ax-hv0cl 27244 ax-hvaddid 27245 ax-hfvmul 27246 ax-hvmulid 27247 ax-hvmulass 27248 ax-hvdistr1 27249 ax-hvdistr2 27250 ax-hvmul0 27251 ax-hfi 27320 ax-his1 27323 ax-his2 27324 ax-his3 27325 ax-his4 27326 ax-hcompl 27443 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-omul 7452 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fi 8200 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-acn 8651 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ico 12052 df-icc 12053 df-fz 12198 df-fl 12455 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-clim 14067 df-rlim 14068 df-rest 15906 df-topgen 15927 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-fbas 19564 df-fg 19565 df-top 20521 df-bases 20522 df-topon 20523 df-cld 20633 df-ntr 20634 df-cls 20635 df-nei 20712 df-lm 20843 df-haus 20929 df-fil 21460 df-fm 21552 df-flim 21553 df-flf 21554 df-cfil 22861 df-cau 22862 df-cmet 22863 df-grpo 26731 df-gid 26732 df-ginv 26733 df-gdiv 26734 df-ablo 26783 df-vc 26798 df-nv 26831 df-va 26834 df-ba 26835 df-sm 26836 df-0v 26837 df-vs 26838 df-nmcv 26839 df-ims 26840 df-ssp 26961 df-ph 27052 df-cbn 27103 df-hnorm 27209 df-hba 27210 df-hvsub 27212 df-hlim 27213 df-hcau 27214 df-sh 27448 df-ch 27462 df-oc 27493 df-ch0 27494 df-shs 27551 df-pjh 27638 |
This theorem is referenced by: pjhcl 27644 pjcli 27660 pjpjhth 27668 pjoccl 27676 pjspansn 27820 pjorthi 27912 pjcompi 27915 |
Copyright terms: Public domain | W3C validator |