Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axinfprim Structured version   Visualization version   GIF version

Theorem axinfprim 30837
Description: ax-inf 8418 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axinfprim ¬ ∀𝑥 ¬ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))

Proof of Theorem axinfprim
StepHypRef Expression
1 axinfnd 9307 . 2 𝑥(𝑦𝑧 → (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))))
2 df-an 385 . . . . . . . . . . 11 ((𝑦𝑧𝑧𝑥) ↔ ¬ (𝑦𝑧 → ¬ 𝑧𝑥))
32exbii 1764 . . . . . . . . . 10 (∃𝑧(𝑦𝑧𝑧𝑥) ↔ ∃𝑧 ¬ (𝑦𝑧 → ¬ 𝑧𝑥))
4 exnal 1744 . . . . . . . . . 10 (∃𝑧 ¬ (𝑦𝑧 → ¬ 𝑧𝑥) ↔ ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))
53, 4bitri 263 . . . . . . . . 9 (∃𝑧(𝑦𝑧𝑧𝑥) ↔ ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))
65imbi2i 325 . . . . . . . 8 ((𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)) ↔ (𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))
76albii 1737 . . . . . . 7 (∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)) ↔ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))
87anbi2i 726 . . . . . 6 ((𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))) ↔ (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))
9 df-an 385 . . . . . 6 ((𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))) ↔ ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))
108, 9bitri 263 . . . . 5 ((𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥))) ↔ ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))
1110imbi2i 325 . . . 4 ((𝑦𝑧 → (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))) ↔ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))))
1211exbii 1764 . . 3 (∃𝑥(𝑦𝑧 → (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))) ↔ ∃𝑥(𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))))
13 df-ex 1696 . . 3 (∃𝑥(𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))) ↔ ¬ ∀𝑥 ¬ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))))
1412, 13bitri 263 . 2 (∃𝑥(𝑦𝑧 → (𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))) ↔ ¬ ∀𝑥 ¬ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥)))))
151, 14mpbi 219 1 ¬ ∀𝑥 ¬ (𝑦𝑧 → ¬ (𝑦𝑥 → ¬ ∀𝑦(𝑦𝑥 → ¬ ∀𝑧(𝑦𝑧 → ¬ 𝑧𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wal 1473  wex 1695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-reg 8380  ax-inf 8418
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-un 3545  df-nul 3875  df-sn 4126  df-pr 4128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator