Step | Hyp | Ref
| Expression |
1 | | axgroth5 9525 |
. 2
⊢
∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) |
2 | | biid 250 |
. . . 4
⊢ (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦) |
3 | | pweq 4111 |
. . . . . . . . 9
⊢ (𝑧 = 𝑣 → 𝒫 𝑧 = 𝒫 𝑣) |
4 | 3 | sseq1d 3595 |
. . . . . . . 8
⊢ (𝑧 = 𝑣 → (𝒫 𝑧 ⊆ 𝑦 ↔ 𝒫 𝑣 ⊆ 𝑦)) |
5 | 4 | cbvralv 3147 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝑦 𝒫 𝑧 ⊆ 𝑦 ↔ ∀𝑣 ∈ 𝑦 𝒫 𝑣 ⊆ 𝑦) |
6 | | ssid 3587 |
. . . . . . . . . 10
⊢ 𝒫
𝑧 ⊆ 𝒫 𝑧 |
7 | | sseq2 3590 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝒫 𝑧 → (𝒫 𝑧 ⊆ 𝑤 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑧)) |
8 | 7 | rspcev 3282 |
. . . . . . . . . 10
⊢
((𝒫 𝑧 ∈
𝑦 ∧ 𝒫 𝑧 ⊆ 𝒫 𝑧) → ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) |
9 | 6, 8 | mpan2 703 |
. . . . . . . . 9
⊢
(𝒫 𝑧 ∈
𝑦 → ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) |
10 | | pweq 4111 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑤 → 𝒫 𝑣 = 𝒫 𝑤) |
11 | 10 | sseq1d 3595 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑤 → (𝒫 𝑣 ⊆ 𝑦 ↔ 𝒫 𝑤 ⊆ 𝑦)) |
12 | 11 | rspccv 3279 |
. . . . . . . . . . 11
⊢
(∀𝑣 ∈
𝑦 𝒫 𝑣 ⊆ 𝑦 → (𝑤 ∈ 𝑦 → 𝒫 𝑤 ⊆ 𝑦)) |
13 | | pwss 4123 |
. . . . . . . . . . . 12
⊢
(𝒫 𝑤 ⊆
𝑦 ↔ ∀𝑣(𝑣 ⊆ 𝑤 → 𝑣 ∈ 𝑦)) |
14 | | vpwex 4775 |
. . . . . . . . . . . . 13
⊢ 𝒫
𝑧 ∈ V |
15 | | sseq1 3589 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝒫 𝑧 → (𝑣 ⊆ 𝑤 ↔ 𝒫 𝑧 ⊆ 𝑤)) |
16 | | eleq1 2676 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝒫 𝑧 → (𝑣 ∈ 𝑦 ↔ 𝒫 𝑧 ∈ 𝑦)) |
17 | 15, 16 | imbi12d 333 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝒫 𝑧 → ((𝑣 ⊆ 𝑤 → 𝑣 ∈ 𝑦) ↔ (𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑦))) |
18 | 14, 17 | spcv 3272 |
. . . . . . . . . . . 12
⊢
(∀𝑣(𝑣 ⊆ 𝑤 → 𝑣 ∈ 𝑦) → (𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑦)) |
19 | 13, 18 | sylbi 206 |
. . . . . . . . . . 11
⊢
(𝒫 𝑤 ⊆
𝑦 → (𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑦)) |
20 | 12, 19 | syl6 34 |
. . . . . . . . . 10
⊢
(∀𝑣 ∈
𝑦 𝒫 𝑣 ⊆ 𝑦 → (𝑤 ∈ 𝑦 → (𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑦))) |
21 | 20 | rexlimdv 3012 |
. . . . . . . . 9
⊢
(∀𝑣 ∈
𝑦 𝒫 𝑣 ⊆ 𝑦 → (∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑦)) |
22 | 9, 21 | impbid2 215 |
. . . . . . . 8
⊢
(∀𝑣 ∈
𝑦 𝒫 𝑣 ⊆ 𝑦 → (𝒫 𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤)) |
23 | 22 | ralbidv 2969 |
. . . . . . 7
⊢
(∀𝑣 ∈
𝑦 𝒫 𝑣 ⊆ 𝑦 → (∀𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ↔ ∀𝑧 ∈ 𝑦 ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤)) |
24 | 5, 23 | sylbi 206 |
. . . . . 6
⊢
(∀𝑧 ∈
𝑦 𝒫 𝑧 ⊆ 𝑦 → (∀𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦 ↔ ∀𝑧 ∈ 𝑦 ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤)) |
25 | 24 | pm5.32i 667 |
. . . . 5
⊢
((∀𝑧 ∈
𝑦 𝒫 𝑧 ⊆ 𝑦 ∧ ∀𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦) ↔ (∀𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 ∧ ∀𝑧 ∈ 𝑦 ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤)) |
26 | | r19.26 3046 |
. . . . 5
⊢
(∀𝑧 ∈
𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦) ↔ (∀𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 ∧ ∀𝑧 ∈ 𝑦 𝒫 𝑧 ∈ 𝑦)) |
27 | | r19.26 3046 |
. . . . 5
⊢
(∀𝑧 ∈
𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ↔ (∀𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 ∧ ∀𝑧 ∈ 𝑦 ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤)) |
28 | 25, 26, 27 | 3bitr4i 291 |
. . . 4
⊢
(∀𝑧 ∈
𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦) ↔ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤)) |
29 | | selpw 4115 |
. . . . . 6
⊢ (𝑧 ∈ 𝒫 𝑦 ↔ 𝑧 ⊆ 𝑦) |
30 | | impexp 461 |
. . . . . . . . 9
⊢ (((𝑧 ⊆ 𝑦 ∧ 𝑧 ≼ 𝑦) → (¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦)) ↔ (𝑧 ⊆ 𝑦 → (𝑧 ≼ 𝑦 → (¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦)))) |
31 | | vex 3176 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
32 | | ssdomg 7887 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ V → (𝑧 ⊆ 𝑦 → 𝑧 ≼ 𝑦)) |
33 | 31, 32 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑧 ⊆ 𝑦 → 𝑧 ≼ 𝑦) |
34 | 33 | pm4.71i 662 |
. . . . . . . . . 10
⊢ (𝑧 ⊆ 𝑦 ↔ (𝑧 ⊆ 𝑦 ∧ 𝑧 ≼ 𝑦)) |
35 | 34 | imbi1i 338 |
. . . . . . . . 9
⊢ ((𝑧 ⊆ 𝑦 → (¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦)) ↔ ((𝑧 ⊆ 𝑦 ∧ 𝑧 ≼ 𝑦) → (¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦))) |
36 | | brsdom 7864 |
. . . . . . . . . . . 12
⊢ (𝑧 ≺ 𝑦 ↔ (𝑧 ≼ 𝑦 ∧ ¬ 𝑧 ≈ 𝑦)) |
37 | 36 | imbi1i 338 |
. . . . . . . . . . 11
⊢ ((𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦) ↔ ((𝑧 ≼ 𝑦 ∧ ¬ 𝑧 ≈ 𝑦) → 𝑧 ∈ 𝑦)) |
38 | | impexp 461 |
. . . . . . . . . . 11
⊢ (((𝑧 ≼ 𝑦 ∧ ¬ 𝑧 ≈ 𝑦) → 𝑧 ∈ 𝑦) ↔ (𝑧 ≼ 𝑦 → (¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦))) |
39 | 37, 38 | bitri 263 |
. . . . . . . . . 10
⊢ ((𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦) ↔ (𝑧 ≼ 𝑦 → (¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦))) |
40 | 39 | imbi2i 325 |
. . . . . . . . 9
⊢ ((𝑧 ⊆ 𝑦 → (𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦)) ↔ (𝑧 ⊆ 𝑦 → (𝑧 ≼ 𝑦 → (¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦)))) |
41 | 30, 35, 40 | 3bitr4ri 292 |
. . . . . . . 8
⊢ ((𝑧 ⊆ 𝑦 → (𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦)) ↔ (𝑧 ⊆ 𝑦 → (¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦))) |
42 | 41 | pm5.74ri 260 |
. . . . . . 7
⊢ (𝑧 ⊆ 𝑦 → ((𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦) ↔ (¬ 𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦))) |
43 | | pm4.64 386 |
. . . . . . 7
⊢ ((¬
𝑧 ≈ 𝑦 → 𝑧 ∈ 𝑦) ↔ (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) |
44 | 42, 43 | syl6bb 275 |
. . . . . 6
⊢ (𝑧 ⊆ 𝑦 → ((𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦) ↔ (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) |
45 | 29, 44 | sylbi 206 |
. . . . 5
⊢ (𝑧 ∈ 𝒫 𝑦 → ((𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦) ↔ (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) |
46 | 45 | ralbiia 2962 |
. . . 4
⊢
(∀𝑧 ∈
𝒫 𝑦(𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) |
47 | 2, 28, 46 | 3anbi123i 1244 |
. . 3
⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦)) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) |
48 | 47 | exbii 1764 |
. 2
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦)) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) |
49 | 1, 48 | mpbir 220 |
1
⊢
∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ 𝒫 𝑧 ∈ 𝑦) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≺ 𝑦 → 𝑧 ∈ 𝑦)) |