Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > axfrege58a | Structured version Visualization version GIF version |
Description: Identical to anifp 1014. Justification for ax-frege58a 37189. (Contributed by RP, 28-Mar-2020.) |
Ref | Expression |
---|---|
axfrege58a | ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anifp 1014 | 1 ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 if-wif 1006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-ifp 1007 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |