Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axfrege52c Structured version   Visualization version   GIF version

Theorem axfrege52c 37201
Description: Justification for ax-frege52c 37202. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
axfrege52c (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑))

Proof of Theorem axfrege52c
StepHypRef Expression
1 dfsbcq 3404 . 2 (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑))
21biimpd 218 1 (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  [wsbc 3402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696  df-cleq 2603  df-clel 2606  df-sbc 3403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator