Step | Hyp | Ref
| Expression |
1 | | axdc4uz.1 |
. . . . . . . . . . 11
⊢ 𝑀 ∈ ℤ |
2 | | axdc4uz.4 |
. . . . . . . . . . 11
⊢ 𝐺 = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) |
3 | 1, 2 | om2uzf1oi 12614 |
. . . . . . . . . 10
⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝑀) |
4 | | axdc4uz.2 |
. . . . . . . . . . 11
⊢ 𝑍 =
(ℤ≥‘𝑀) |
5 | | f1oeq3 6042 |
. . . . . . . . . . 11
⊢ (𝑍 =
(ℤ≥‘𝑀) → (𝐺:ω–1-1-onto→𝑍 ↔ 𝐺:ω–1-1-onto→(ℤ≥‘𝑀))) |
6 | 4, 5 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝐺:ω–1-1-onto→𝑍 ↔ 𝐺:ω–1-1-onto→(ℤ≥‘𝑀)) |
7 | 3, 6 | mpbir 220 |
. . . . . . . . 9
⊢ 𝐺:ω–1-1-onto→𝑍 |
8 | | f1of 6050 |
. . . . . . . . 9
⊢ (𝐺:ω–1-1-onto→𝑍 → 𝐺:ω⟶𝑍) |
9 | 7, 8 | ax-mp 5 |
. . . . . . . 8
⊢ 𝐺:ω⟶𝑍 |
10 | 9 | ffvelrni 6266 |
. . . . . . 7
⊢ (𝑛 ∈ ω → (𝐺‘𝑛) ∈ 𝑍) |
11 | | fovrn 6702 |
. . . . . . 7
⊢ ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝐺‘𝑛) ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅})) |
12 | 10, 11 | syl3an2 1352 |
. . . . . 6
⊢ ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅})) |
13 | 12 | 3expb 1258 |
. . . . 5
⊢ ((𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴)) → ((𝐺‘𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅})) |
14 | 13 | ralrimivva 2954 |
. . . 4
⊢ (𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) → ∀𝑛 ∈ ω ∀𝑥 ∈ 𝐴 ((𝐺‘𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅})) |
15 | | axdc4uz.5 |
. . . . 5
⊢ 𝐻 = (𝑛 ∈ ω, 𝑥 ∈ 𝐴 ↦ ((𝐺‘𝑛)𝐹𝑥)) |
16 | 15 | fmpt2 7126 |
. . . 4
⊢
(∀𝑛 ∈
ω ∀𝑥 ∈
𝐴 ((𝐺‘𝑛)𝐹𝑥) ∈ (𝒫 𝐴 ∖ {∅}) ↔ 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) |
17 | 14, 16 | sylib 207 |
. . 3
⊢ (𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}) → 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) |
18 | | axdc4uz.3 |
. . . 4
⊢ 𝐴 ∈ V |
19 | 18 | axdc4 9161 |
. . 3
⊢ ((𝐶 ∈ 𝐴 ∧ 𝐻:(ω × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚)))) |
20 | 17, 19 | sylan2 490 |
. 2
⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚)))) |
21 | | f1ocnv 6062 |
. . . . . . 7
⊢ (𝐺:ω–1-1-onto→𝑍 → ◡𝐺:𝑍–1-1-onto→ω) |
22 | | f1of 6050 |
. . . . . . 7
⊢ (◡𝐺:𝑍–1-1-onto→ω → ◡𝐺:𝑍⟶ω) |
23 | 7, 21, 22 | mp2b 10 |
. . . . . 6
⊢ ◡𝐺:𝑍⟶ω |
24 | | fco 5971 |
. . . . . 6
⊢ ((𝑓:ω⟶𝐴 ∧ ◡𝐺:𝑍⟶ω) → (𝑓 ∘ ◡𝐺):𝑍⟶𝐴) |
25 | 23, 24 | mpan2 703 |
. . . . 5
⊢ (𝑓:ω⟶𝐴 → (𝑓 ∘ ◡𝐺):𝑍⟶𝐴) |
26 | 25 | 3ad2ant1 1075 |
. . . 4
⊢ ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → (𝑓 ∘ ◡𝐺):𝑍⟶𝐴) |
27 | | uzid 11578 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
28 | 1, 27 | ax-mp 5 |
. . . . . . . 8
⊢ 𝑀 ∈
(ℤ≥‘𝑀) |
29 | 28, 4 | eleqtrri 2687 |
. . . . . . 7
⊢ 𝑀 ∈ 𝑍 |
30 | | fvco3 6185 |
. . . . . . 7
⊢ ((◡𝐺:𝑍⟶ω ∧ 𝑀 ∈ 𝑍) → ((𝑓 ∘ ◡𝐺)‘𝑀) = (𝑓‘(◡𝐺‘𝑀))) |
31 | 23, 29, 30 | mp2an 704 |
. . . . . 6
⊢ ((𝑓 ∘ ◡𝐺)‘𝑀) = (𝑓‘(◡𝐺‘𝑀)) |
32 | 1, 2 | om2uz0i 12608 |
. . . . . . . 8
⊢ (𝐺‘∅) = 𝑀 |
33 | | peano1 6977 |
. . . . . . . . 9
⊢ ∅
∈ ω |
34 | | f1ocnvfv 6434 |
. . . . . . . . 9
⊢ ((𝐺:ω–1-1-onto→𝑍 ∧ ∅ ∈ ω)
→ ((𝐺‘∅) =
𝑀 → (◡𝐺‘𝑀) = ∅)) |
35 | 7, 33, 34 | mp2an 704 |
. . . . . . . 8
⊢ ((𝐺‘∅) = 𝑀 → (◡𝐺‘𝑀) = ∅) |
36 | 32, 35 | ax-mp 5 |
. . . . . . 7
⊢ (◡𝐺‘𝑀) = ∅ |
37 | 36 | fveq2i 6106 |
. . . . . 6
⊢ (𝑓‘(◡𝐺‘𝑀)) = (𝑓‘∅) |
38 | 31, 37 | eqtri 2632 |
. . . . 5
⊢ ((𝑓 ∘ ◡𝐺)‘𝑀) = (𝑓‘∅) |
39 | | simp2 1055 |
. . . . 5
⊢ ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → (𝑓‘∅) = 𝐶) |
40 | 38, 39 | syl5eq 2656 |
. . . 4
⊢ ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → ((𝑓 ∘ ◡𝐺)‘𝑀) = 𝐶) |
41 | 23 | ffvelrni 6266 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝑍 → (◡𝐺‘𝑘) ∈ ω) |
42 | 41 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → (◡𝐺‘𝑘) ∈ ω) |
43 | | suceq 5707 |
. . . . . . . . . . . 12
⊢ (𝑚 = (◡𝐺‘𝑘) → suc 𝑚 = suc (◡𝐺‘𝑘)) |
44 | 43 | fveq2d 6107 |
. . . . . . . . . . 11
⊢ (𝑚 = (◡𝐺‘𝑘) → (𝑓‘suc 𝑚) = (𝑓‘suc (◡𝐺‘𝑘))) |
45 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑚 = (◡𝐺‘𝑘) → 𝑚 = (◡𝐺‘𝑘)) |
46 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑚 = (◡𝐺‘𝑘) → (𝑓‘𝑚) = (𝑓‘(◡𝐺‘𝑘))) |
47 | 45, 46 | oveq12d 6567 |
. . . . . . . . . . 11
⊢ (𝑚 = (◡𝐺‘𝑘) → (𝑚𝐻(𝑓‘𝑚)) = ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘)))) |
48 | 44, 47 | eleq12d 2682 |
. . . . . . . . . 10
⊢ (𝑚 = (◡𝐺‘𝑘) → ((𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚)) ↔ (𝑓‘suc (◡𝐺‘𝑘)) ∈ ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘))))) |
49 | 48 | rspcv 3278 |
. . . . . . . . 9
⊢ ((◡𝐺‘𝑘) ∈ ω → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚)) → (𝑓‘suc (◡𝐺‘𝑘)) ∈ ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘))))) |
50 | 42, 49 | syl 17 |
. . . . . . . 8
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚)) → (𝑓‘suc (◡𝐺‘𝑘)) ∈ ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘))))) |
51 | 4 | peano2uzs 11618 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑍 → (𝑘 + 1) ∈ 𝑍) |
52 | | fvco3 6185 |
. . . . . . . . . . . 12
⊢ ((◡𝐺:𝑍⟶ω ∧ (𝑘 + 1) ∈ 𝑍) → ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) = (𝑓‘(◡𝐺‘(𝑘 + 1)))) |
53 | 23, 51, 52 | sylancr 694 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑍 → ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) = (𝑓‘(◡𝐺‘(𝑘 + 1)))) |
54 | 1, 2 | om2uzsuci 12609 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝐺‘𝑘) ∈ ω → (𝐺‘suc (◡𝐺‘𝑘)) = ((𝐺‘(◡𝐺‘𝑘)) + 1)) |
55 | 41, 54 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝑍 → (𝐺‘suc (◡𝐺‘𝑘)) = ((𝐺‘(◡𝐺‘𝑘)) + 1)) |
56 | | f1ocnvfv2 6433 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺:ω–1-1-onto→𝑍 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
57 | 7, 56 | mpan 702 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝑍 → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
58 | 57 | oveq1d 6564 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝑍 → ((𝐺‘(◡𝐺‘𝑘)) + 1) = (𝑘 + 1)) |
59 | 55, 58 | eqtrd 2644 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑍 → (𝐺‘suc (◡𝐺‘𝑘)) = (𝑘 + 1)) |
60 | | peano2 6978 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝐺‘𝑘) ∈ ω → suc (◡𝐺‘𝑘) ∈ ω) |
61 | 41, 60 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝑍 → suc (◡𝐺‘𝑘) ∈ ω) |
62 | | f1ocnvfv 6434 |
. . . . . . . . . . . . . 14
⊢ ((𝐺:ω–1-1-onto→𝑍 ∧ suc (◡𝐺‘𝑘) ∈ ω) → ((𝐺‘suc (◡𝐺‘𝑘)) = (𝑘 + 1) → (◡𝐺‘(𝑘 + 1)) = suc (◡𝐺‘𝑘))) |
63 | 7, 61, 62 | sylancr 694 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑍 → ((𝐺‘suc (◡𝐺‘𝑘)) = (𝑘 + 1) → (◡𝐺‘(𝑘 + 1)) = suc (◡𝐺‘𝑘))) |
64 | 59, 63 | mpd 15 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑍 → (◡𝐺‘(𝑘 + 1)) = suc (◡𝐺‘𝑘)) |
65 | 64 | fveq2d 6107 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑍 → (𝑓‘(◡𝐺‘(𝑘 + 1))) = (𝑓‘suc (◡𝐺‘𝑘))) |
66 | 53, 65 | eqtr2d 2645 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝑍 → (𝑓‘suc (◡𝐺‘𝑘)) = ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1))) |
67 | 66 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → (𝑓‘suc (◡𝐺‘𝑘)) = ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1))) |
68 | | ffvelrn 6265 |
. . . . . . . . . . . 12
⊢ ((𝑓:ω⟶𝐴 ∧ (◡𝐺‘𝑘) ∈ ω) → (𝑓‘(◡𝐺‘𝑘)) ∈ 𝐴) |
69 | 41, 68 | sylan2 490 |
. . . . . . . . . . 11
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → (𝑓‘(◡𝐺‘𝑘)) ∈ 𝐴) |
70 | | fveq2 6103 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (◡𝐺‘𝑘) → (𝐺‘𝑛) = (𝐺‘(◡𝐺‘𝑘))) |
71 | 70 | oveq1d 6564 |
. . . . . . . . . . . 12
⊢ (𝑛 = (◡𝐺‘𝑘) → ((𝐺‘𝑛)𝐹𝑥) = ((𝐺‘(◡𝐺‘𝑘))𝐹𝑥)) |
72 | | oveq2 6557 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑓‘(◡𝐺‘𝑘)) → ((𝐺‘(◡𝐺‘𝑘))𝐹𝑥) = ((𝐺‘(◡𝐺‘𝑘))𝐹(𝑓‘(◡𝐺‘𝑘)))) |
73 | | ovex 6577 |
. . . . . . . . . . . 12
⊢ ((𝐺‘(◡𝐺‘𝑘))𝐹(𝑓‘(◡𝐺‘𝑘))) ∈ V |
74 | 71, 72, 15, 73 | ovmpt2 6694 |
. . . . . . . . . . 11
⊢ (((◡𝐺‘𝑘) ∈ ω ∧ (𝑓‘(◡𝐺‘𝑘)) ∈ 𝐴) → ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘))) = ((𝐺‘(◡𝐺‘𝑘))𝐹(𝑓‘(◡𝐺‘𝑘)))) |
75 | 42, 69, 74 | syl2anc 691 |
. . . . . . . . . 10
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘))) = ((𝐺‘(◡𝐺‘𝑘))𝐹(𝑓‘(◡𝐺‘𝑘)))) |
76 | | fvco3 6185 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐺:𝑍⟶ω ∧ 𝑘 ∈ 𝑍) → ((𝑓 ∘ ◡𝐺)‘𝑘) = (𝑓‘(◡𝐺‘𝑘))) |
77 | 23, 76 | mpan 702 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑍 → ((𝑓 ∘ ◡𝐺)‘𝑘) = (𝑓‘(◡𝐺‘𝑘))) |
78 | 77 | eqcomd 2616 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝑍 → (𝑓‘(◡𝐺‘𝑘)) = ((𝑓 ∘ ◡𝐺)‘𝑘)) |
79 | 57, 78 | oveq12d 6567 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑍 → ((𝐺‘(◡𝐺‘𝑘))𝐹(𝑓‘(◡𝐺‘𝑘))) = (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))) |
80 | 79 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → ((𝐺‘(◡𝐺‘𝑘))𝐹(𝑓‘(◡𝐺‘𝑘))) = (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))) |
81 | 75, 80 | eqtrd 2644 |
. . . . . . . . 9
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘))) = (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))) |
82 | 67, 81 | eleq12d 2682 |
. . . . . . . 8
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → ((𝑓‘suc (◡𝐺‘𝑘)) ∈ ((◡𝐺‘𝑘)𝐻(𝑓‘(◡𝐺‘𝑘))) ↔ ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘)))) |
83 | 50, 82 | sylibd 228 |
. . . . . . 7
⊢ ((𝑓:ω⟶𝐴 ∧ 𝑘 ∈ 𝑍) → (∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚)) → ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘)))) |
84 | 83 | impancom 455 |
. . . . . 6
⊢ ((𝑓:ω⟶𝐴 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → (𝑘 ∈ 𝑍 → ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘)))) |
85 | 84 | ralrimiv 2948 |
. . . . 5
⊢ ((𝑓:ω⟶𝐴 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → ∀𝑘 ∈ 𝑍 ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))) |
86 | 85 | 3adant2 1073 |
. . . 4
⊢ ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → ∀𝑘 ∈ 𝑍 ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))) |
87 | | vex 3176 |
. . . . . 6
⊢ 𝑓 ∈ V |
88 | | rdgfun 7399 |
. . . . . . . . 9
⊢ Fun
rec((𝑦 ∈ V ↦
(𝑦 + 1)), 𝑀) |
89 | | omex 8423 |
. . . . . . . . 9
⊢ ω
∈ V |
90 | | resfunexg 6384 |
. . . . . . . . 9
⊢ ((Fun
rec((𝑦 ∈ V ↦
(𝑦 + 1)), 𝑀) ∧ ω ∈ V) → (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) ∈
V) |
91 | 88, 89, 90 | mp2an 704 |
. . . . . . . 8
⊢
(rec((𝑦 ∈ V
↦ (𝑦 + 1)), 𝑀) ↾ ω) ∈
V |
92 | 2, 91 | eqeltri 2684 |
. . . . . . 7
⊢ 𝐺 ∈ V |
93 | 92 | cnvex 7006 |
. . . . . 6
⊢ ◡𝐺 ∈ V |
94 | 87, 93 | coex 7011 |
. . . . 5
⊢ (𝑓 ∘ ◡𝐺) ∈ V |
95 | | feq1 5939 |
. . . . . 6
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → (𝑔:𝑍⟶𝐴 ↔ (𝑓 ∘ ◡𝐺):𝑍⟶𝐴)) |
96 | | fveq1 6102 |
. . . . . . 7
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → (𝑔‘𝑀) = ((𝑓 ∘ ◡𝐺)‘𝑀)) |
97 | 96 | eqeq1d 2612 |
. . . . . 6
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → ((𝑔‘𝑀) = 𝐶 ↔ ((𝑓 ∘ ◡𝐺)‘𝑀) = 𝐶)) |
98 | | fveq1 6102 |
. . . . . . . 8
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → (𝑔‘(𝑘 + 1)) = ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1))) |
99 | | fveq1 6102 |
. . . . . . . . 9
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → (𝑔‘𝑘) = ((𝑓 ∘ ◡𝐺)‘𝑘)) |
100 | 99 | oveq2d 6565 |
. . . . . . . 8
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → (𝑘𝐹(𝑔‘𝑘)) = (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))) |
101 | 98, 100 | eleq12d 2682 |
. . . . . . 7
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ↔ ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘)))) |
102 | 101 | ralbidv 2969 |
. . . . . 6
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → (∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ↔ ∀𝑘 ∈ 𝑍 ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘)))) |
103 | 95, 97, 102 | 3anbi123d 1391 |
. . . . 5
⊢ (𝑔 = (𝑓 ∘ ◡𝐺) → ((𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) ↔ ((𝑓 ∘ ◡𝐺):𝑍⟶𝐴 ∧ ((𝑓 ∘ ◡𝐺)‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))))) |
104 | 94, 103 | spcev 3273 |
. . . 4
⊢ (((𝑓 ∘ ◡𝐺):𝑍⟶𝐴 ∧ ((𝑓 ∘ ◡𝐺)‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 ((𝑓 ∘ ◡𝐺)‘(𝑘 + 1)) ∈ (𝑘𝐹((𝑓 ∘ ◡𝐺)‘𝑘))) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
105 | 26, 40, 86, 104 | syl3anc 1318 |
. . 3
⊢ ((𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
106 | 105 | exlimiv 1845 |
. 2
⊢
(∃𝑓(𝑓:ω⟶𝐴 ∧ (𝑓‘∅) = 𝐶 ∧ ∀𝑚 ∈ ω (𝑓‘suc 𝑚) ∈ (𝑚𝐻(𝑓‘𝑚))) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
107 | 20, 106 | syl 17 |
1
⊢ ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |